SP Quiz - SPLessons

Quadratic Equation – Quiz 2

Home > > Tutorial
SPLessons 5 Steps, 3 Clicks
5 Steps - 3 Clicks

Quadratic Equation – Quiz 2

shape Introduction

Quadratic Equation is one of important topic in Quantitative Aptitude Section. In Quadratic Equation – Quiz 2 article candidates can find a question with an answer. By solving this question candidates can improve and maintain, speed, and accuracy in the exams. Quadratic Equation – Quiz 2 questions are very useful for different exams such as IBPS PO, Clerk, SSC CGL, SBI PO, NIACL Assistant, NICL AO, IBPS SO, RRB, Railways, Civil Services etc.

shape Q1

1. Which of the following equations has real roots ?
    A. (x - 1)(2x - 5) = 0 B. [latex]{x}^{2} [/latex] + x + 4 = 0 C. 2[latex]{x}^{2} [/latex] - 3x + 4 = 0 D. 3[latex]{x}^{2} [/latex] + 4x + 5 = 0


Given equation (x - 1)(2x - 5) = 0
[latex]\Rightarrow 2{x}^{2} - 7x + 5 = 0[/latex]
i.e, D = [latex]{(-7)}^{2} - 4 \times 2 \times 5 [/latex] = (49 - 40) = 9 > 0
i.e, Given equation has real roots.

shape Q2

The roots of the equation [latex]{x}^{2} [/latex] - 8x + 15 = 0 are :
    A. 2, 3 B. 3, 5 C. 8, 15 D. 6, 5


[latex]{x}^{2} [/latex] - 8x + 15 = 0 [latex]\Rightarrow {x}^{2} - 5x - 3x + 15 = 0[/latex]
[latex]\Rightarrow [/latex] x (x - 5) -3 (x - 5) = 0
[latex]\Rightarrow [/latex] (x - 5) (x - 3) [latex]\Rightarrow [/latex] x = 5 or x = 3

shape Q3

If a and b are the roots of the equation [latex]{x}^{2} [/latex] - 6x + 6 = 0, then the value of ([latex]{a}^{2} [/latex] + [latex]{b}^{2} [/latex] ) are :
    A. 6 B. 12 C. 24 D. 36


(a + b) = 6 and ab = 6
i.e, ([latex]{a}^{2} [/latex] + [latex]{b}^{2} [/latex] ) = [latex]{(a + b)}^{2} [/latex] - 2ab = [latex]{6}^{2} - 2 \times 6[/latex] = (36 - 12 ) = 24

shape Q4

A quadratic equation whose roots are 2 and -15 is given by :
    A. [latex]{x}^{2} [/latex] - 30 = 0 B. [latex]{x}^{2} [/latex] + 13x - 30 = 0 C. [latex]{x}^{2} [/latex] + 15x - 2 = 0 D. [latex]{x}^{2} [/latex] - 2x + 15 = 0


[latex]\alpha + \beta [/latex] = 2 + (-15) = 13, [latex]\alpha \beta [/latex] = 2 [latex]\times [/latex] (-15) = -30
Required equation is [latex]{x}^{2} [/latex] + [latex](\alpha + \beta) [/latex]x - [latex]\alpha \beta [/latex] = 0
[latex]{x}^{2} [/latex] + 13x - 30 = 0

shape Q5

For what values of k, the equation [latex]{x}^{2} [/latex] + 2(k - 4)x + 2k = 0 has equal roots ?
    A. 6, 4 B. 10, 4 C. 8, 2 D. 12, 2


Since the roots are equal, we have D = 0
i.e, 4[latex]({k - 4})^{2} [/latex] - 8k = 0 [latex]\Rightarrow [/latex] [latex]({k - 4})^{2} [/latex] - 2k = 0
[latex]{k}^{2} [/latex] + 16 - 10k = 0 [latex]{k}^{2} [/latex] - 10k + 16 = 0
[latex]\Rightarrow [/latex] (k - 8) (k - 2) = 0 [latex]\Rightarrow [/latex] k = 8 or k =2