Consider the rhombus ABCD. Let the diagonals intersect at E. Since
diagonals bisect at right angles in a rhombus.
[latex]{(BE)}^{2}[/latex] + [latex]{(AE)}^{2}[/latex] = [latex]{(AB)}^{2}[/latex]
[latex]{(25)}^{2}[/latex] = [latex]{(15)}^{2}[/latex] + [latex]{(AE)}^{2}[/latex] AE = [latex]\sqrt {(625 - 225)}[/latex] = [latex]\sqrt {400}[/latex] = 20
AC = 20 + 20 = 40 cm.
Area of a rhombus = [latex]\frac {1}{2} \times {d}_{1}{d}_{2}[/latex]
= [latex]\frac {1}{2} \times 40 \times 30[/latex] = 600 sq.cm.