Let ABCD be a rhombus, all sides of rhombus equal and its diagonal cuts each other at right angle.
Let AC = 12cm
Area of rhombus = [latex]\frac {1}{2}[/latex] (product of diagonals) = [latex]\frac {1}{2}[/latex] (AC × BD)
96 = [latex]\frac {1}{2}[/latex] (12 × BD) Ã 12 × BD = 192 Ã BD = 16 cm
Now in right angled triangle AOB
[latex]{AB}^{2} = {AO}^{2} + {BO}^{2}; AO = \frac {1}{2}[/latex](AC) = 6 cm; BO [latex]\frac {1}{2}[/latex] (BD) = 8cm
[latex]{AB}^{2} = {6}^{2} + {8}^{2}[/latex] = 36 + 64 = 100 Ã AB = 10cm
Hence perimeter of rhombus = 4 × side = 4 × 10 = 40cm