Formual 1:
Cube -
A cube is a three dimensional figure and has six square faces which meet each other at right angles. It has eight vertices and twelve edges.Let each edge of a cube be of length [latex]a[/latex]. Then,
Volume = [latex]a^3[/latex] cubic units
Surface area = 6[latex]a^2[/latex] sq. units
Diagonal = [latex]\sqrt{3}a[/latex]units
Example 1
The diagonal of a cube is [latex]\sqrt[6]{3}[/latex] cm. Find its volume and surface area.
Solution:
Let the edge of the cube be a.
[latex]\sqrt{3}[/latex]a = [latex]\sqrt[6]{3}[/latex] ⇒ a = 6.
So, Volume = [latex]cm^{3}[/latex] = (6 x 6 x 6) [latex]cm^{3}[/latex] = 216 [latex]cm^{3}[/latex].
Surface area = 6[latex]a^{2}[/latex] = (6 x 6 x 6) [latex]cm^{2}[/latex] = 216 [latex]cm^{2}[/latex].
Example 2
The surface area of a cube is 1734 sq. cm. Find its volume.
Solution:
Let the edge of the cube be a. Then,
6[latex]a^{2}[/latex] = 1734 ⇒ [latex]a^{2}[/latex] = 289 ⇒ a = 17cm.
∴ Volume = [latex]a^{3}[/latex] = [latex](17)^{3} cm^{3}[/latex] = 4913 [latex]cm^{3}[/latex].
Formual 2:
Cuboid(Rectangular parallelopiped) -
A solid body having six rectangular faces, is called cuboid.
(or) A parallelopiped whose faces are rectangles is called rectangular parallelopiped or cuboid.
Let l - length, b - breadth, h - height. Then,
Volume = (l x b x h) cubic units
Surface area = 2(lb + bh + lh) sq. units
Diagonal = [latex]\sqrt{l^2 + b^2 + h^2}[/latex] units
Example 1
Find the volume and surface area of a cubiod 16m long, 14 m broad and 7m high.
Solution:
Volume = (16 x 14 x 7) [latex]m^{3}[/latex] = 1568 [latex]m^{3}[/latex].
Surface area = [2 (16 x 14 + 14 x 7 + 16 x 7)] [latex]cm^{2}[/latex] = 868 [latex]cm^{2}[/latex].
Example 2
Find the length of the longest pole that can be placed in a room 12 m long, 8 m broad and 9 m high.
Solution:
Length of logest pole = length of the diagonal of the room
= [latex]\sqrt{(12)^{2} + 8^{2} + 9^{2}}[/latex] = [latex]\sqrt{289}[/latex] = 17 m.
Formual 3:
Cylinder -
A solid geometrical figure with straight parallel sides and a circular or oval cross section is called cylinder. Let radius of base = r and height( or length) = h. Then,
Volume = [latex]\pi r^2 h [/latex] cubic units
Curved Surface area = 2[latex]\pi r h[/latex] sq. units
Total surface area = 2([latex]\pi rh + 2\pi r^2[/latex]) = 2[latex]\pi r(h + r)[/latex]sq. units
Example 1
Find the volume, curved surface area and the total surface area of a cylinder with diameter of base 7 cm and height 40cm.
Solution:
Volume = [latex]\pi r^{2}h[/latex] = ([latex]\frac{22}{7}[/latex] x [latex]\frac{7}{2}[/latex] x [latex]\frac{7}{2}[/latex] x 40) [latex]cm^{3}[/latex] = 1540 [latex]cm^{3}[/latex].
Curved surface area = [latex]2\pi rh[/latex] = (2 x [latex]\frac{22}{7}[/latex] x [latex]\frac{7}{2}[/latex] x 40) [latex]cm^{2}[/latex] = 880 [latex]cm^{2}[/latex].
Total surface area = [latex]2\pi rh[/latex] + [latex]\pi r^{2}[/latex] = [latex]2\pi r (h + r)[/latex]
= [2 x [latex]\frac{22}{7}[/latex] x [latex]\frac{7}{2}[/latex] x (40 + 35)] c = 957 [latex]cm^{2}[/latex].
Example 2
If the capacity of a cylindrical tank is 1848 [latex]m^{3}[/latex] and the diameter of its base is 14 [latex]m[/latex], then find the depth of the tank.
Solution:
Let the depth of the tank be [latex]h[/latex] meters. Then,
[latex]\pi[/latex] x [latex](\frac{0.50}{2 \times 100})^{2} \times h[/latex] = [latex]\frac{22}{1000}[/latex] ⇒ [latex]h \pm (\frac{22}{1000} \times \frac{100 \times 100}{0.25 \times 0.25} \times \frac{7}{22})[/latex] = 112 m.
Formual 4:
Cone -
A solid (3-dimensional) object with a circular flat base joined to a curved side that ends in an apex point is called cone. Let radius of base = r and height = h. Then,
Slant height, l = [latex]\sqrt{h^2 + r^2}[/latex] units
Volume = [latex]\frac{1}{3}\pi r^2 h[/latex] cubic units
Curved surface area = [latex]\pi r l[/latex] sq. units
Total surface area = [latex]\pi r l + \pi r^2[/latex] sq. units
Example 1:
Find the slant height, volume, curved surface area and the whole surface area of a cone of radius 21 cm and height 28 cm.
Solution:
Here, [latex]r[/latex] = 21 cm and [latex]h[/latex] = 28 cm.
∴ Slant height, [latex]l[/latex] = [latex]\sqrt{r^{2} + h^{2}}[/latex] = [latex]\sqrt{(21)^{2} + (28)^{2}}[/latex] = [latex]\sqrt{12225}[/latex] = 35 cm.
Volume = [latex]\frac{1}{3} \pi r^{2}h[/latex] = ([latex]\frac{1}{3}[/latex] x [latex]\frac{22}{7}[/latex] x 21 x 21 x 28) [latex]\frac{1}{3}[/latex] = 12936 [latex]cm^{3}[/latex].
Curved surface area = [latex]\pi rl[/latex] = ([latex]\frac{22}{7}[/latex] x 21 x 35)[latex]cm^{2}[/latex] = 2310 [latex]cm^{2}[/latex].
Total surface area = ([latex]\pi rl[/latex] + [latex]\pi r^{2}[/latex]) = [latex](2310 + \frac{22}{7} x 21 x 21) cm^{2}[/latex] = 3696 [latex]cm^{2}[/latex].
Example 2:
Find the length of canvas 1.25 [latex]m[/latex] wide required to build a conical tent of radius 7 meters and height 24 meters.
Solution:
Here, [latex]r[/latex] = 7[latex]m[/latex] and [latex]h[/latex] = 24m.
So, [latex]l[/latex] = [latex]\sqrt{r^{2} + h^{2}}[/latex] = [latex]\sqrt{7^{2} + (24)^2}[/latex] = [latex]\sqrt{625}[/latex] = 25m.
Area of canvas = [latex]\pi rl[/latex] = ([latex]\frac{22}{7}[/latex] x 7 x 25)[latex]m^{2}[/latex] = 550 [latex]m^{2}[/latex].
∴ Length of canvas = ([latex]\frac{Area}{Width}[/latex]) = ([latex]\frac{550}{1.25}[/latex])m = 440 m.
Formual 5:
Sphere -
A solid (3-dimensional) object with a circular flat base joined to a curved side that ends in an apex point is called cone. Let radius of the sphere be r. Then,
Volume = ([latex]\frac{4}{3} \pi r^{3}[/latex]) cubic units
Surface area = [latex]\pi r^{2}[/latex] sq. units
Example 1:
Find the volume and surface area of a sphere of radius 10.5 cm.
Solution:
Volume = [latex]\frac{4}{3} \pi r^{3}[/latex] = ([latex]\frac{4}{3}[/latex] x [latex]\frac{22}{7}[/latex] x [latex]\frac{21}{2}[/latex] x [latex]\frac{21}{2}[/latex] x [latex]\frac{21}{2}[/latex]) [latex]cm^{3}[/latex] = 4851 [latex]cm^{3}[/latex].
Surface area = [latex]4 \pi r^{2}[/latex] = (4 x [latex]\frac{22}{7}[/latex] x [latex]\frac{21}{2}[/latex] x [latex]\frac{21}{2}[/latex])[latex]cm^{2}[/latex] = 1386 [latex]cm^{2}[/latex].
Example 2:
If the radius of a sphere is increased by 50 %, find the increase percent in volume and the increase percent in the surface area.
Solution:
Let original radius = R. Then, new radius = [latex]\frac{150}{100}[/latex] R = [latex]\frac{3R}{2}[/latex].
Original volume = [latex]\frac{4}{3} \pi R^{3}[/latex], New volume = [latex]\frac{4}{3} \pi (\frac{3R}{2})^{3}[/latex] = [latex]\frac{9 \pi R^{3}}{2}[/latex].
Increase % in volume = ([latex]\frac{19}{6} \pi R^{3}[/latex] x [latex]\frac{3}{4 \pi R^{3}}[/latex] x 100)% = 237.5%.
Original surface area = [latex]4 \pi R^{2}[/latex]. New surface area = [latex]4 \pi (\frac{3R}{2})^{2}[/latex] = [latex]9 \pi R^{2}[/latex]
Increase % in surface area = ([latex]\frac{5 \pi R^{2}}{4 \pi R^{2}}[/latex] x 100)% = 125%.
Formual 6:
Hemisphere -
In geometry, hemisphere is an exact half of sphere. Let the radius of a hemisphere be [latex]r[/latex].
Volume = [latex]\frac{2}{3} \pi r^3[/latex] cubic units.
Curved surface area = 2[latex]\pi r^2[/latex] sq. units.
Total surface area = 3[latex]\pi r^2 [/latex] sq. units.
Example 1:
Find the volume, curved surface area and the total surface area of a hemisphere of radius 10.5 cm.
Solution:
Volume = [latex]\frac{2}{3} \pi r^3[/latex] = ([latex]\frac{2}{3}[/latex] x [latex]\frac{22}{7}[/latex] x [latex]\frac{21}{2}[/latex] x [latex]\frac{21}{2}[/latex] x [latex]\frac{21}{2}[/latex]) [latex]cm^{3}[/latex] = 2425.5 [latex]cm^{3}[/latex].
Curved surface area = 2[latex]\pi r^2[/latex] = (2 x [latex]\frac{22}{7}[/latex] x [latex]\frac{21}{2}[/latex] x [latex]\frac{21}{2}[/latex]) [latex]cm^{2}[/latex].
Total surface area = 3[latex]\pi r^2 [/latex] = (3 x [latex]\frac{22}{7}[/latex] x [latex]\frac{21}{2}[/latex] x [latex]\frac{21}{2}[/latex])[latex]cm^{2}[/latex] = 693 [latex]cm^{2}[/latex].
Total surface area = 3[latex]\pi r^2 [/latex] = (3 x [latex]\frac{22}{7}[/latex] x [latex]\frac{21}{2}[/latex] x [latex]\frac{21}{2}[/latex])[latex]cm^{2}[/latex] = 1039.5 [latex]cm^{2}[/latex].
Example 2:
A hemispherical bowl of inrenal radius 9 cm contains a liqud. That liquid is to be filled into cylidrical shaped small bottles of diameter 3 cm and height 4 cm. How many bottles will be needed to empty the bowl?
Solution:
Volume of bowl = ([latex]\frac{2}{3} \pi[/latex] x 9 x 9 x 9) [latex]cm^{3}[/latex].
Number of 1 bottle = ([latex]\pi \times \frac{3}{2} \times \frac{3}{2} \times 4[/latex])[latex]cm^{3}[/latex] = 9 [latex]\pi[/latex] [latex]cm^{3}[/latex].
Number of bottles = ([latex]\frac{486 \pi}{9 \pi}[/latex]) = 54.