Formula 1:
Present Worth = [latex]\frac{100 \times A}{100 + (R \times T)}[/latex] = [latex]\frac{100 \times T.D}{100 + (R \times T)}[/latex]
Example 1:
Find the prsent wroth of Rs. 930 due 3 years hance at 8% per annum. Also find the discount.
Solution:
P.W. = [latex]\frac{100 \times Amount}{100 + (R \times T)}[/latex] = Rs[latex][\frac{100 \times 930}{100 + (8 \times 3)}][/latex] = Rs. [latex]\frac{100 \times 930}{124}[/latex] = Rs. 750.
T.D. = (Amount) - (P.W.) = Rs. (930 -750) = Rs. 180.
Example 2:
If the true discount on a sum due 2 years hence atr 14% per anuum be Rs. 168, the sum due is:
Solution:
P.W. = [latex]\frac{100 \times T.D.}{R \times T}[/latex] = [latex]\frac{100 \times 168}{14 \times 2}[/latex] = 600
Sum =(P.W. +T.D.) = Rs. (600 +168) = Rs. 768
Formula 2:
True discount = [latex]\frac{P.W \times R \times T}{100}[/latex] = [latex]\frac{A \times R \times T}{100 + (R \times T)}[/latex]
Example 1:
If Rs. 10 be allowed as true discount on a bill of Rs. 110 due at the end of a certain time, then the discount allowed on the same sum due at the end of double the time is:
Solution:
S.I on Rs. (110 -10) for a certain time = Rs. 10.
S.I. on Rs. 100 for double the time = Rs. 20.
T.D. on Rs. 120 = Rs. (120 -100) = Rs. 20.
T.D. on Rs. 110 = Rs. ([latex]\frac{20}{120}[/latex] x 110) = Rs. 18.33.
Example 2:
Rs. 20 is the true discount on Rs. 260 due after a certain time. What will be the true discount on the same sum due after half of the former time, the rate of intrest being the same?
Solution:
S.I. on rs. (260 - 20) for a given time = Rs. 20.
S.I. on Rs. 240 for half the time = Rs. 10.
T.D. on Rs. 250 = Rs. 10.
T.D. on Rs. 260 = Rs. ([latex]\frac{10}{250}[/latex] x 260) = Rs. 10.40.
Formula 3:
Sum = [latex]\frac{S.I. * T.D.}{S.I. - T.D.}[/latex]
Example 1:
The true discount on a certain sum of money due 3 years hence is Rs. 250 and the simple intrest on the same sum for the same time and at the same rate is Rs. 375. Find the sum and the rate percent
Solution:
T.D. = Rs. 250 and S.I. = Rs. 375.
Sum due = [latex]\frac{S.I. \times T.D}{(S.I.) - (T.D.)}[/latex]
= Rs. [[latex]\frac{375 \times 250}{375 - 250}[/latex]] = Rs. 750.
Rate = ([latex]\frac{100 \times 375}{750 \times 3}[/latex])% = 16 [latex]\frac{2}{3}[/latex]%
Example 2:
The simple intrest and the true discount on a certain sum for a given time and at a given rate are Rs. 85 and rS.80 respectively. the sum is:
Solution:
Sum = [latex]\frac{S.I. \times T.D.}{S.I. - T.D.}[/latex] = [latex]\frac{85 \times 80}{(85 - 80)}[/latex] = Rs. 1360.