1. If sin θ + cosec θ = 2, then [latex]{sin}^{2}θ + {cosec}^{2}θ [/latex]is equal to:
A. 1
B. 4
C. 2
D. None of these
Answer - Option C
Explanation -
Given that, sinθ + cosecθ = 2
On squaring both sides, we get
[latex]{sin}^{2}θ + {cosec}^{2}θ [/latex] + 2 = 4
[latex]{sin}^{2}θ + {cosec}^{2}θ [/latex] = 2
2. The value of [latex]\frac{{cot}^{2}θ + 1}{{cot}^{2}θ - 1}[/latex] is equal to:
A. sin 2θ
B. cos 2θ
C. cosec 2θ
D. sec 2θ
Answer - Option D
Explanation -
[latex]\frac{{cot}^{2}θ + 1}{{cot}^{2}θ - 1}[/latex] = [latex]\frac{+ 1{tan}^{2}θ}{1 - + 1{tan}^{2}θ}[/latex]
[latex]\frac {1}{{cos}^{2}θ + {sin}^{2}θ} [/latex] = [latex]\frac{1}{cos2θ}[/latex] = sec2θ
3. If tan A = 2 tan B + cot B, then 2 tan (A – B) is equal to:
A. tan B
B. 2 tan B
C. cot B
D. 2 cot B
Answer - Option C
Explanation -
Given that
tan A = 2 tan B + cot B ...(i)
Now, 2 tan (A – B) = 2([latex]\frac{tan A - tan B}{1 + tanA tan B}[/latex])
[latex]2 \frac{(2tan B + cot B - tan B)}{1 + (2tan B cot B) tan B}[/latex]
[latex]2 \frac{tan B cot B}{2(1 + {tan}^{2} B)}[/latex] = [latex]\frac{cotB({tan}^{2} B + 1)}{1 + {tan}^{2} B}[/latex] = cotB
4. If tan A – tan B = x and cot B – cot A = y, then cot (A – B) is equal to:
A. [latex]\frac{1}{x} + y[/latex]
B. [latex]\frac{1}{xy}[/latex]
C. [latex]\frac{1}{x} - \frac{1}{y}[/latex]
D. [latex]\frac{1}{x} + \frac{1}{y}[/latex]
Answer - Option D
Explanation -
Given that
tan A – tan B = x ...(i)
and cot B – cot A = y ...(ii)
Now, cot (A – B) = [latex]\frac{1}{tan (A - B)}[/latex]
= [latex]\frac{1 + tan A tan B}{tan A - tan B}[/latex]
= [latex]\frac{1}{tan A - tan B)} + \frac{tan A tan B}{tan A - tan B}[/latex]
= [latex]\frac{1}{x} + \frac{1}{y}[/latex] [from (i) and (ii)]
5. If sin θ = [latex]\frac{4}{5}[/latex] and θ lies in the third quadrant, then cos [latex]\frac{θ}{2}[/latex] is equal to:
A. [latex]\frac{1}{\sqrt{5}}[/latex]
B. [latex] - \frac{1}{\sqrt{5}}[/latex]
C. [latex]\sqrt{\frac{2}{5}}[/latex]
D. -[latex]\sqrt{\frac{2}{5}}[/latex]
Answer - Option B
Explanation -
Given that,
sinθ = [latex] - \frac{4}{5}[/latex] = and θ lies in the IIIrd quadrent
cosθ = [latex]\sqrt{1 - \frac{16}{25}}[/latex]
Now, [latex] cos \frac{θ}{2}[/latex] = [latex]\sqrt{ \frac{1 + cosθ}{2}}[/latex] = [latex]\sqrt{ \frac{1 - \frac{3}{5} }{2}}[/latex] = ± [latex]\sqrt{\frac{1}{5}}[/latex]
But we take [latex] cos \frac{θ}{2}[/latex] = -[latex]\sqrt{\frac{1}{5}}[/latex] Since, if θ lies in IIIrd
quadrant, then [latex]\frac{θ}{2}[/latex] will be in IInd quadrant.
Hence, [latex] cos \frac{θ}{2}[/latex] = -[latex]\sqrt{\frac{1}{5}}[/latex]
6. The value of cos 1º cos 2º cos 3º... cos 100º is equal to
A. 0
B. -1
C. 0
D. None of these
Answer - Option C
Explanation -
cos 1º cos 2º cos 3º ... cos 90º... cos 100º
= cos 1º cos 2º cos 3º ... 0 ... cos 100º = 0
[i.e, cos 90º = 0]
7. The value of sin 12º sin 48º sin 54º is equal to:
A. [latex]\frac{1}{16}[/latex]
B. [latex]\frac{1}{32}[/latex]
C. [latex]\frac{1}{8}[/latex]
D. [latex]\frac{1}{4}[/latex]
Answer - Option C
Explanation -
Now, sin 12º sin 48º sin 54º
[latex]\frac{1}{2}[/latex](cos36º - cos60º )cos36º
[latex]\frac{1}{2}(\frac{(\sqrt{5} + 1}{4}\frac{1}{2})(\frac{(\sqrt{5} + 1}{4})[/latex] = [latex]\frac{5 -1}{32} = \frac{4}{32} = \frac{1}{8}[/latex]
8. The value of 2 cos x – cos 3x – cos 5x is equal to:
A. [latex]16{cos}^{3}x {sin}^{2}x[/latex]
B. [latex]16{sin}^{3}x {cos}^{2}x[/latex]
C. [latex]4{cos}^{3}x {sin}^{2}x[/latex]
D. [latex]4{sin}^{3}x {cos}^{2}x[/latex]
Answer - Option A
Explanation -
2 cos x – cos 3x – cos 5x = 2 cos x – 2 cos x cos 4x
= 2 cos x (1 – cos 4x) = 2 cos x 2 [latex]{sin}^{2}2x[/latex]
4 cos x[latex]{ (2 sin x cos x)}^{2}[/latex] = [latex]16 {sin}^{2}x{cos}^{3}x[/latex]
9. If cos θ = [latex]\frac{1}{2}(x + \frac{1}{x})[/latex] then [latex]\frac{1}{2}({x}^{2} + \frac{1}{{x}^{2}})[/latex] is equal to:
A. sin 2θ
B. cos 2θ
C. tan 2θ
D. sec 2θ
Answer - Option D
Explanation -
Given that cos θ = [latex]\frac{1}{2}(x + \frac{1}{x})[/latex] = [latex]x + \frac{1}{x}[/latex] = 2 cosθ
We know that [latex]{x}^{2} + \frac {1}{{x}^{2}}[/latex] = [latex]{x}^{2} + \frac {1}{{x}^{2}}[/latex]
= [latex]{2cos θ}^{2} -2 = {4 cos θ}^{2}[/latex] -2
= 2cos 2θ [from (i)]
i.e, [latex]\frac{1}{2}({x}^{2} + \frac {1}{{x}^{2}})[/latex] =[latex] \frac{1}{2} * {x}^{2} 2cos 2θ[/latex]
10. The value of x for the maximum value of [latex]\sqrt{3}[/latex]cosx + sin x is:
A. 30º
B. 45º
C. 60º
D. 90º
Answer - Option A
Explanation -
Let f(x) = [latex]\sqrt{3}[/latex]cosx + sin x
f(x) = [latex]2(\frac{\sqrt{3}}{2}cosx + \frac{1}{2}sinx) [/latex] = 2sin ([latex] x + \frac{\pi}{3}[/latex])
Since, -1 ≤ sin (x + [latex]\frac{\pi}{3}) ≤ 1[/latex]
Hence, f(x) is maximum if x + [latex]\frac{\pi}{3}[/latex] = [latex]\frac{\pi}{2}[/latex]
x = [latex]\frac{\pi}{6}[/latex] = 30º
11. The equation [latex]{(a + b)}^{2}[/latex] = 4ab [latex]{sin}^{2}θ [/latex] is possible only when
A. 2a = b
B. a = b
C. a = 2b
D. None of these
Answer - Option A
Explanation -
We have [latex]{(a + b)}^{2}[/latex] = 4ab [latex]{sin}^{2}θ [/latex]
[latex]{sin}^{2}θ [/latex] = [latex]\frac{{(a + b)}^{2}}{4ab}[/latex]
Since [latex]{sin}^{2}θ [/latex] ≤ 1
= [latex]\frac{{(a + b)}^{2}}{4ab}[/latex] ≤ 1
= [latex]{(a + b)}^{2} - 4ab = {(a + b)}^{2} [/latex] ≤ 1
= [latex]{(a - b)}^{2} [/latex] ≤ 0
a = b
12. The value of the expression 1 - [latex]\frac{{sin}^{2}y}{1 + cos y} + \frac{1 + cos y}{sin y} - \frac {sin}{1 - cos y}is equal to:[/latex]
A. 0
B. 1
C. sin y
D. cos y
Answer - Option D
Explanation -
The given expression can be written as
= [latex]\frac { 1 + cos y - {sin} ^ {2}y }{1 + cos y}[/latex] + [latex] \frac { 1 + {cos}^{2} y - {sin}^{2} y }{sin y (1 + cos y)} [/latex]
= [latex]\frac{cos y (1 + cos y)}{1 + cos y} + 0[/latex] = cos y
13. The circular wire of diameter 10 cm is cut and placed along the circumference of a circle of diameter 1m. The angle subtended by the write at the center of the circle is equal to:
A. [latex]\frac{\pi}{4}rad[/latex]
B. [latex]\frac{\pi}{3}rad[/latex]
C. [latex]\frac{\pi}{5}rad[/latex]
D. [latex]\frac{\pi}{10}rad[/latex]
Answer - Option C
Explanation -
Given that, diameter of circular wire = 10 cm,
Length of wire = 10[latex]\ pi[/latex]
Hence, required angle = [latex]\frac{length of arc}{radius of big circle}[/latex]
[latex]\frac{10 \pi}{50}[/latex] = [latex]\frac{\pi}{5}[/latex]
14. The greatest and least value of sin x cos x are:
A. 1, -1
B. [latex]\frac{1}{2}[/latex], - [latex]\frac{1}{2}[/latex]
C. [latex]\frac{1}{4}[/latex], - [latex]\frac{1}{4}[/latex]
D. 2, -2
Answer - Option B
Explanation -
f(x) = sin x cos x = [latex]\frac{1}{2} sin 2x[/latex]
We know – 1 ≤ sin 2x ≤ 1
- [latex]\frac{1}{2}[/latex] ≤ [latex]\frac{1}{2} sin 2x[/latex] ≤ [latex]\frac{1}{2}[/latex]
Thus, the greatest and least value of f(x) are [latex]\frac{1}{2}[/latex] and -[latex]\frac{1}{2}[/latex] respectively
15. If A = [latex]{sin}^{2}θ + {cosec}^{4}θ [/latex], then for all real values of θ
A. 1 ≤ A ≤ 2
B. [latex]\frac{3}{4}[/latex] ≤ A ≤ 1
C. [latex]\frac{13}{16}[/latex] ≤ A ≤ 1
D. [latex]\frac{3}{4}[/latex] ≤ A ≤ [latex]\frac{13}{16}[/latex]
Answer - Option B
Explanation -
We have, A = [latex]{sin}^{2}θ + {cos}^{4}θ [/latex]
= [latex]{sin}^{2}θ + {cos}^{2}θ {cos}^{2}θ [/latex] ≤ [latex]{sin}^{2}θ + {cos}^{2}θ [/latex] (Since, [latex]{cos}^{2}θ[/latex] ≤ 1)
[latex]{sin}^{2}θ + {cos}^{4}θ [/latex] ≤ 1
A ≤ 1
Again, [latex]{sin}^{2}θ + {cos}^{4}θ [/latex] = 1 - [latex]{cos}^{2}θ + {cos}^{4}θ [/latex]
= [latex]{cos}^{4}θ - {cos}^{2}θ + 1 [/latex]
= [latex]{{cos}^{2}θ - \frac{1}{2}}^{2}[/latex] + [latex]\frac{3}{4}[/latex] ≥ [latex]\frac{3}{4}[/latex]
Hence [latex]\frac{3}{4}[/latex]≤ A ≤ 1