Formula 1: Laws of Indices/ Laws of Exponents:
[latex]a^m[/latex] x [latex]a^n[/latex] = [latex]a^{m + n}[/latex], [latex]\frac{a^m}{a^n}[/latex] = [latex]a^{m - n}[/latex], [latex]({a^m})^{n}[/latex] = [latex]a^{mn}[/latex], [latex](ab)^m[/latex] = [latex]a^m[/latex] x [latex]b^m[/latex], [latex](\frac{a}{b})^n[/latex] = [latex]\frac{a^n}{b^n}[/latex], [latex]a^0[/latex] = 1
Example 1:
Show that for any positive real number p, the expression [latex]a^{-p}[/latex] is equivalent to [latex]\frac{1}{a^{p}}[/latex].
Solution:
We proceed with the following manipulation – [latex]a^{-p}[/latex] = [latex]a^{0 - p}[/latex]
Using Law 2 i.e. [latex]\frac{a^{m}}{a^{n}}[/latex] = [latex]a^{(m - n)}[/latex], we can rewrite the above expression as -
[latex]\frac{a^{0}}{a^{p}}[/latex]
= [latex]\frac{1}{a^{p}}[/latex], which is the required result.
Example 2:
Simplify and evaluate [latex](\frac{16}{81})^{-(\frac{3}{4})}[/latex]
Solution:
Using the laws of indices and some manipulation –
[latex](\frac{16}{81})^{-(\frac{3}{4})}[/latex] = [latex]\frac{1}{(\frac{16}{81})^{\frac{3}{4}}}[/latex]
= [latex](\frac{81}{16})^{\frac{3}{4}}[/latex]
= [latex]((\frac{81}{16})^{\frac{1}{4}})^{3}[/latex]
= [latex](\frac{81^{\frac{1}{4}}}{16^{\frac{1}{4}}})^{3}[/latex]
= [latex](\frac{3}{2})^{3}[/latex]
= [latex]\frac{3^{3}}{2^{3}}[/latex]
= [latex]\frac{27}{8}[/latex]
Example 3:
Simplify the expression [latex]y = x^{a - b} \times x^{b - c} \times x^{c - a} \times x^{-a - b}[/latex]
Solution:
Using the laws of indices:
[latex]y = x^{a - b} \times x^{b - c} \times x^{c - a} \times x^{-a - b}[/latex]
[latex]y = x^{(a - b) + (b - c) + (c - a) + (-a - b)}[/latex]
[latex]y = x^{-a - b}[/latex]
[latex]y = \frac{1}{x^{a + b}}[/latex]
Laws of Surds/ Rules of Surds:
Rule 1: [latex]\sqrt{(a \times b)}[/latex] = [latex]\sqrt{a}[/latex] x [latex]\sqrt{b}[/latex]
Example:
Simplify [latex]\sqrt{18}[/latex]
Solution:
Since 18 = 9 x 2 = [latex]3^{2} \times 2[/latex], as 9 is the largest perfect square factor of 18.
[latex]\sqrt{18}[/latex] = [latex]\sqrt{3^{2} \times 2}[/latex]
= [latex]\sqrt{3^{2}}[/latex] x [latex]\sqrt{2}[/latex] (Using the rule [latex]\sqrt{(a \times b)}[/latex] = [latex]\sqrt{a}[/latex] x [latex]\sqrt{b}[/latex])
= 3[latex]\sqrt{2}[/latex]
Rule 2: [latex]\sqrt{\frac{a}{b}}[/latex] = [latex]\frac{\sqrt{a}}{\sqrt{b}}[/latex]
Example:
Simplify [latex]\sqrt{\frac{12}{121}}[/latex]
Solution:
[latex]\sqrt{\frac{12}{121}}[/latex] = [latex]\frac{\sqrt{12}}{\sqrt{121}}[/latex] (Using the rule [latex]\sqrt{\frac{a}{b}}[/latex] = [latex]\frac{\sqrt{a}}{\sqrt{b}}[/latex])
= [latex]\frac{\sqrt{2^{2} \times 3}}{11}[/latex] (Since 4 is the largest perfect square factor of 12)
= [latex]\frac{\sqrt{2^{2} \times \sqrt{3}}}{11}[/latex] (Using the rule [latex]\sqrt{(a \times b)}[/latex] = [latex]\sqrt{a}[/latex] x [latex]\sqrt{b}[/latex])
= [latex]\frac{2\sqrt{3}}{11}[/latex]
Rule 3: [latex]\frac{b}{\sqrt{a}}[/latex] = [latex]\frac{b}{\sqrt{a}}[/latex] x [latex]\frac{\sqrt{a}}{\sqrt{a}}[/latex] = [latex]\frac{b\sqrt{a}}{\sqrt{a}}[/latex]
Example:
Rationalise [latex]\frac{5}{\sqrt{7}}[/latex]
Solution:
[latex]\frac{5}{\sqrt{7}}[/latex] = [latex]\frac{5}{\sqrt{7}}[/latex] x [latex]\frac{\sqrt{7}}{\sqrt{7}}[/latex] (Multiply both numerator and denominator by [latex]\sqrt{7}[/latex])
= [latex]5\frac{\sqrt{7}}{7}[/latex]
Rule 4: [latex]a\sqrt{c} \pm b\sqrt{c} = (a \pm b)\sqrt{c}[/latex]
Example:
Simplify [latex]5\sqrt{6} + 4\sqrt{6}[/latex]
Solution:
[latex]5\sqrt{6} + 4\sqrt{6}[/latex] = (5 + 4)[latex]\sqrt{6}[/latex] (Using the rule [latex]a\sqrt{c} \pm b\sqrt{c} = (a \pm b)\sqrt{c}[/latex])
= [latex]9\sqrt{6}[/latex]
Rule 5: [latex]\frac{c}{a + b\sqrt{n}}[/latex] multiply top and bottom by [latex]a - b\sqrt{n}[/latex]
Following this rule enables to rationalise the denominator.
Example:
Rationalise [latex]\frac{3}{2 + \sqrt{2}}[/latex]
Solution:
[latex]\frac{3}{2 + \sqrt{2}}[/latex] = [latex]\frac{3}{2 + \sqrt{2}}[/latex] x [latex]\frac{2 - \sqrt{2}}{2 - \sqrt{2}}[/latex] (Multiply the numerator and denominator by [latex]2 - \sqrt{2}[/latex])
= [latex]\frac{6 - 3\sqrt{2}}{4 - 2}[/latex]
= [latex]\frac{6 - 3\sqrt{2}}{2}[/latex]
Rule 6: [latex]\frac{c}{a - b\sqrt{n}}[/latex] multiply top and bottom by [latex]a + b\sqrt{n}[/latex]
Following this rule enables to rationalise the denominator.
Example:
Rationalise [latex]\frac{3}{2 - \sqrt{2}}[/latex]
Solution:
[latex]\frac{3}{2 - \sqrt{2}}[/latex] = [latex]\frac{3}{2 - \sqrt{2}}[/latex] x [latex]\frac{2 + \sqrt{2}}{2 + \sqrt{2}}[/latex] (Multiply the numerator and denominator by [latex]2 + \sqrt{2}[/latex])
= [latex]\frac{6 + 3\sqrt{2}}{4 - 2}[/latex]
= [latex]\frac{6 + 3\sqrt{2}}{2}[/latex]