1. For what value of ‘y’, [latex]{x}^{2}[/latex] + 112x +[latex]{y}^{2}[/latex] is a perfect square?
A. [latex]\frac{1}{24}[/latex]
B. [latex]\frac{1}{12}[/latex]
C. [latex]\frac{1}{6}[/latex]
D. [latex]\frac{1}{3}[/latex]
Answer: Option A
Explanation:
[latex]{x}^{2}[/latex] + 112x +[latex]{y}^{2}[/latex] = [latex]{x}^{2}[/latex] + 2(124)x + [latex]{y}^{2}[/latex]
By, [latex]{(a + b)}^{2}[/latex] = [latex]{a}^{2}[/latex] + 2ab + [latex]{b}^{2}[/latex]
Here, a = x and b = y = [latex]\frac{1}{24}[/latex]
So, for [latex]{x}^{2}[/latex] + 112x +[latex]{y}^{2}[/latex] to be perfect square y = [latex]\frac{1}{24}[/latex]
2. If x and y are natural numbers such that x + y = 2017, then what is the value of [latex]{(-1)}^{x}[/latex] + [latex]{(-1)}^{y}[/latex]?
Answer: Option C
Explanation:
Sum of two numbers can be odd only if one of them is odd and other one is even. Let x be odd and y be even
⇒ [latex]{(-1)}^{x}[/latex] + [latex]{(-1)}^{y}[/latex] = -1 + 1 = 0
∴ The value is 0
3. A root of equation a[latex]{x}^{2}[/latex] + bx + c = 0 (where a, b and c are rational numbers) is 5 + 3√3. What is the value of [latex]\frac{({a}^{2}+ {b}^{2} + {c}^{2})}{(a + b + c)}[/latex]?
A. [latex]\frac{35}{3}[/latex]
B. [latex]\frac{37}{3}[/latex]
C. [latex]\frac{-105}{11}[/latex]
D. [latex]\frac{-105}{13}[/latex]
Answer: Option D
Explanation:
Since one root of the equation is irrational, so another root will be 5 – 3√3
According to the problem statement,
⇒ [x – (5 + 3√3)] [x – (5 – 3√3)] = 0
⇒[latex]{x}^{2}[/latex] – 10x – 2 = 0
⇒ a = 1, b = -10 and c = -2, Put this in the required equations
∴ [latex]\frac{({a}^{2}+ {b}^{2} + {c}^{2})}{(a + b + c)}[/latex] = [latex]\frac{(1 + 100 + 4)}{ (1 – 10 – 2)}[/latex] = [latex]\frac{-105}{11}[/latex]
4. If the arithmetic mean of two numbers is 7 and the geometric mean of the same two number is 2√10. Then find the numbers x and y respectively, such that x > y.
A. 4,10
B. 2,5
C. 5,2
D. 10,4
Answer: Option D
Explanation:
Given, Arithmetic Mean = 7
⇒ [latex]\frac{(x + y)}{2}[/latex] = 7
⇒ x + y = 14 ----(1)
And, Geometric Mean = 2√10
⇒ √xy = 2√10
⇒ xy = [latex]{(2√10)}^{2}[/latex] = 40
Now,
⇒ [latex]{(x - y)}^{2}[/latex] = [latex]{(x + y)}^{2}[/latex] - 4xy = 142 - (4 × 40) = 196 - 160 = 36
⇒ x - y = 6 ----(2)
Now, adding equation (1) and (2) we get
⇒ 2x = 20
⇒ x = 10
Now, by equation (1)
⇒ y = 14 - x = 14 - 10 = 4
5. Cost of 8 pencils, 5 pens and 3 erasers is Rs. 111. Cost of 9 pencils, 6 pens and 5 erasers is Rs. 130. Cost of 16 pencils, 11 pens and 3 erasers is Rs. 221. What is the cost (in Rs) of 39 pencils, 26 pens and 13 erasers?
A. 316
B. 546
C. 624
D. 482
Answer: Option
Explanation:
Let the price of single pencil, pen, and eraser be x, y, and z respectively
According to question,
8x + 5y + 3z = Rs. 111 ----(1)
9x + 6y + 5z = Rs. 130 ----(2)
16x + 11y + 3z = Rs. 221 ----(3)
Subtracting equation (1) from (3)
⇒ (16x + 11y + 3z) - (9x + 6y + 5z) = 221 - 111
⇒ 8x + 6y = 110
⇒ 4x + 3y = 55 ----(4)
Multiply the equation (2) by 3 and (3) by 5 and then subtracting equation (2) from (3)
⇒ (16x + 11y + 3z) × 5 - (9x + 6y + 5z) × 3 = 221 × 5 - 130 × 3
⇒ 80x + 55y + 15z - 27x - 18y - 15z = 1105 - 390
⇒ 53x + 37y = 715 ----(5)
Multiply the equation (4) by 53 and (5) by 4 and then subtracting equation (4) from (5)
⇒ 212x + 159y - 212x - 148y = 2915 - 2860
⇒ 11y = 55
⇒ y = 5
By putting the value of y = 5 in equation (4)
⇒ 4x + 3 × 5 = 55
⇒ x = 10
By putting the value of y = 5 and x = 10 in equation (1)
⇒ 8 × 10 + 5 × 5 + 3z = 111
⇒ 80 + 25 + 3z = 111
⇒ z = 2
∴ Cost of 39 pencils, 26 pens and 13 erasers is 39x + 26y + 13z =39 × 10 + 26 × 5 + 13 × 2 = Rs. 546