Sets: A, B, C
Universal Set: I
Complement: [latex]A^\prime[/latex]
Proper Subset: A [latex]\subset[/latex] B
Empty Set: [latex]\emptyset[/latex]
Union of Sets: A [latex]\cup[/latex] B
Intersection of Sets: A [latex]\cap[/latex] B
Difference of Sets: A \ B
1. A [latex]\subset[/latex] I
2. A [latex]\subset[/latex] A
3. A = B if A [latex]\subset[/latex] B and B [latex]\subset[/latex] A.
4. Empty Set
[latex]\emptyset \subset[/latex] A
5. Union of Sets
C = A [latex]\cup[/latex] B = {X [latex]\mid[/latex] X [latex]\in[/latex] A or X [latex]\in[/latex] B}
6. Commutativity
A [latex]\cup[/latex] B = B [latex]\cup[/latex] A
7. Associativity
A [latex]\cup[/latex] (B [latex]\cup[/latex] C) = (A [latex]\cup[/latex] B) [latex]\cup[/latex] C
8. Intersection of Sets
C = A [latex]\cup[/latex] B = {X [latex]\mid[/latex] X [latex]\in[/latex] A or X [latex]\in[/latex] B}
9. Commutativity
A [latex]\cap[/latex] B = B [latex]\cap[/latex] A
10. Associativity
A [latex]\cap[/latex] (B [latex]\cap[/latex] C) = (A [latex]\cap[/latex] B) [latex]\cap[/latex] C
11. Distributivity
A [latex]\cup[/latex] (B [latex]\cap[/latex] C) = (A [latex]\cup[/latex] B) [latex]\cap[/latex] (A [latex]\cup[/latex] C)
A [latex]\cap[/latex] (B [latex]\cup[/latex] C) = (A [latex]\cap[/latex] B) [latex]\cup[/latex] (A [latex]\cap[/latex] C)
12. Idempotency
A [latex]\cap[/latex] A = A
A [latex]\cup[/latex] A = A
13. Domination
A [latex]\cap[/latex] [latex]\emptyset[/latex] = [latex]\emptyset[/latex]
A [latex]\cup[/latex] I = I
14. Identity
A [latex]\cup[/latex] [latex]\emptyset[/latex]= A
A [latex]\cap[/latex] I = A
15. Complement
[latex]A^\prime[/latex] = {X [latex]\in[/latex] I [latex]\mid[/latex] X [latex]\notin[/latex] A}
16. Complement of Intersection and Union
A [latex]\cup[/latex] [latex]A^\prime[/latex] = I
A [latex]\cap[/latex] [latex]A^\prime[/latex] = [latex]\emptyset[/latex]
17. De Morgan's Laws
[latex](A \cup B)^\prime[/latex] = [latex]A^\prime[/latex] [latex]\cap[/latex] [latex]B^\prime[/latex]
[latex](A \cap B)^\prime[/latex] = [latex]A^\prime[/latex] [latex]\cup[/latex] [latex]B^\prime[/latex]
18. Difference of Sets
C = B \ A = {X [latex]\mid[/latex] X [latex]\in[/latex] B and X [latex]\notin[/latex] A}
19. B \ A = B \ (A [latex]\cap[/latex] B)
20. B \ A = B [latex]\cap[/latex] [latex]A^\prime[/latex]
21. A \ A = [latex]\emptyset[/latex]
22. A \ B = A if A [latex]\cap[/latex] B = [latex]\emptyset[/latex]
23. (A \ B) [latex]\cap[/latex] C = (A [latex]\cap[/latex] C)\ (B [latex]\cap[/latex] C)
24. [latex]A^\prime[/latex] = I \ A
25. Cartesian Product
C = A [latex]\times[/latex] B = {(x,y)[latex]\mid[/latex] X [latex]\in[/latex] A and Y [latex]\in[/latex] B}