Quantitative Aptitude - SPLessons

Set Identities

Home > > Tutorial
SPLessons 5 Steps, 3 Clicks
5 Steps - 3 Clicks

Set Identities

shape Introduction

The methods of expressing the same set using the names of sets and set operations are known as Set Identities. Set Identities is one of the parts of Number Sets. This chapter lists out the formulas of Set Identities which are very useful in all the competitive exams to solve the questions under Quantitative Aptitude Section. Set Identities formulae can be used as an everyday online reference guide.

shape Formulae

    Sets: A, B, C Universal Set: I Complement: [latex]A^\prime[/latex] Proper Subset: A [latex]\subset[/latex] B Empty Set: [latex]\emptyset[/latex] Union of Sets: A [latex]\cup[/latex] B Intersection of Sets: A [latex]\cap[/latex] B Difference of Sets: A \ B

1. A [latex]\subset[/latex] I
2. A [latex]\subset[/latex] A
3. A = B if A [latex]\subset[/latex] B and B [latex]\subset[/latex] A.
4. Empty Set [latex]\emptyset \subset[/latex] A
5. Union of Sets C = A [latex]\cup[/latex] B = {X [latex]\mid[/latex] X [latex]\in[/latex] A or X [latex]\in[/latex] B}


6. Commutativity A [latex]\cup[/latex] B = B [latex]\cup[/latex] A
7. Associativity A [latex]\cup[/latex] (B [latex]\cup[/latex] C) = (A [latex]\cup[/latex] B) [latex]\cup[/latex] C
8. Intersection of Sets C = A [latex]\cup[/latex] B = {X [latex]\mid[/latex] X [latex]\in[/latex] A or X [latex]\in[/latex] B}
9. Commutativity A [latex]\cap[/latex] B = B [latex]\cap[/latex] A
10. Associativity A [latex]\cap[/latex] (B [latex]\cap[/latex] C) = (A [latex]\cap[/latex] B) [latex]\cap[/latex] C
11. Distributivity A [latex]\cup[/latex] (B [latex]\cap[/latex] C) = (A [latex]\cup[/latex] B) [latex]\cap[/latex] (A [latex]\cup[/latex] C) A [latex]\cap[/latex] (B [latex]\cup[/latex] C) = (A [latex]\cap[/latex] B) [latex]\cup[/latex] (A [latex]\cap[/latex] C)
12. Idempotency A [latex]\cap[/latex] A = A A [latex]\cup[/latex] A = A
13. Domination A [latex]\cap[/latex] [latex]\emptyset[/latex] = [latex]\emptyset[/latex] A [latex]\cup[/latex] I = I
14. Identity A [latex]\cup[/latex] [latex]\emptyset[/latex]= A A [latex]\cap[/latex] I = A
15. Complement [latex]A^\prime[/latex] = {X [latex]\in[/latex] I [latex]\mid[/latex] X [latex]\notin[/latex] A}
16. Complement of Intersection and Union A [latex]\cup[/latex] [latex]A^\prime[/latex] = I A [latex]\cap[/latex] [latex]A^\prime[/latex] = [latex]\emptyset[/latex]
17. De Morgan's Laws [latex](A \cup B)^\prime[/latex] = [latex]A^\prime[/latex] [latex]\cap[/latex] [latex]B^\prime[/latex] [latex](A \cap B)^\prime[/latex] = [latex]A^\prime[/latex] [latex]\cup[/latex] [latex]B^\prime[/latex]
18. Difference of Sets C = B \ A = {X [latex]\mid[/latex] X [latex]\in[/latex] B and X [latex]\notin[/latex] A}
19. B \ A = B \ (A [latex]\cap[/latex] B)
20. B \ A = B [latex]\cap[/latex] [latex]A^\prime[/latex]
21. A \ A = [latex]\emptyset[/latex]
22. A \ B = A if A [latex]\cap[/latex] B = [latex]\emptyset[/latex]
23. (A \ B) [latex]\cap[/latex] C = (A [latex]\cap[/latex] C)\ (B [latex]\cap[/latex] C)
24. [latex]A^\prime[/latex] = I \ A
25. Cartesian Product C = A [latex]\times[/latex] B = {(x,y)[latex]\mid[/latex] X [latex]\in[/latex] A and Y [latex]\in[/latex] B}


Quantitative Aptitude - Related Information
IBPS/SBI Clerk - Topic Wise Solved Papers
Important Mensuration Practice Sets
Ratios And Proportions Practice Quiz Sets
NTSE_Stage 2_Question Papers & Detailed Solutions_Download Now


Join us on - Telegram Channel