Formulas: Properties of Logarithms
- Product: [latex]log_{b}(a . c)[/latex] = [latex]log_{b}a[/latex] + [latex]log_{b}c[/latex]
- Quotient: [latex]log_{b}\frac{a}{b}[/latex] = [latex]log_{b}a[/latex] - [latex]log_{b}c[/latex]
- Power: [latex]log_{b}a^{n}[/latex] = [latex]n . log_{b}a[/latex]
- [latex]log_{b}1 = 0[/latex]
- [latex]log_{b}b = 1[/latex]
- Inverse 1: [latex]log_{b}b^{n}[/latex] = [latex]n[/latex]
- Inverse 2: [latex]b{log_{b}n}[/latex] = [latex]n, n > 0[/latex]
- One-to-One: [latex]log_{b}a[/latex] = [latex]log_{b}c[/latex] if and only if a = c
- Change of Base: [latex]log_{b}a[/latex] = [latex]\frac{log_{c}a}{log_{c}b}[/latex] = [latex]\frac{log a}{log b}[/latex] = [latex]\frac{In a}{In b}[/latex]
Example 1
Use the properties of logarithms to rewrite expression as a single logarithm:
[latex]2log_{b}x[/latex] + [latex]\frac{1}{2}log_{b}(x + 4)[/latex]
Solution:
[latex]2log_{b}x[/latex] + [latex]\frac{1}{2}log_{b}(x + 4)[/latex]
[latex]log_{b}x^{2}[/latex] + [latex]log_{b}(x + 4)^{\frac{1}{2}}[/latex] [Using Power Property]
[latex]log_{b}[x^{2}(x + 4)^{\frac{1}{2}}][/latex] [Using Product Property]
Example 2
Use the properties of logarithms to rewrite expression as a single logarithm:
[latex]4log_{b}(x + 2) - 3log_{b}(x - 5)[/latex]
Solution:
[latex]4log_{b}(x + 2) - 3log_{b}(x - 5)[/latex]
= [latex]log_{b}(x + 2)^{4} - log_{b}(x - 5)^{3}[/latex] [Using Power Property]
= [latex]log_{b}\frac{(x + 2)^{4}}{(x - 5)^{3}}[/latex] [Using Quotient Property]
Example 3
Use the properties of logarithms to express the following logarithm in terms of logarithm of [latex]x[/latex], [latex]y[/latex] and [latex]z[/latex].
[latex]log_{b}(xy^{2})[/latex]
Solution:
[latex]log_{b}(xy^{2})[/latex] = [latex]log_{b}x[/latex] + [latex]log_{b}y^{2}[/latex] [Using Product Property]
= [latex]log_{b}x[/latex] + [latex]2log_{b}y[/latex] [Using Power Property]
Example 4
Use the properties of logarithms to express the following logarithm in terms of logarithm of [latex]x[/latex], [latex]y[/latex] and [latex]z[/latex].
[latex]log_{b}\frac{x^{2}\sqrt{y}}{z^{5}}[/latex]
Solution:
[latex]log_{b}\frac{x^{2}\sqrt{y}}{z^{5}}[/latex]
= [latex]log_{b}(x^{2}\sqrt{y}) \ - log_{b}z^{5}[/latex] [Using Quotient Property]
= [latex]log_{b}x^{2}[/latex] + [latex]log_{b}\sqrt{y}[/latex] - [latex]log_{b}z^{5}[/latex] [Using Product Property]
= [latex]2log_{b}x[/latex] + [latex]\frac{1}{2}log_{b}y[/latex] - [latex]5log_{b}z[/latex] [Using Power Property]