Directions(1-5): Permutation and Combinations
1. In how many ways can the letters of the word 'APPLE' be arranged ?
A. 720
B. 120
C. 60
D. 180
Answer : Option C
Explanation: The word 'APPLE' contains 5 letters, 1A, 2P, 1L.and 1E.
∴ Required number of ways = [latex]\frac{5!}{(1!)(2!)(1!)(1!)}[/latex] = 60
2. The value of [latex]{75}_{{P}_{2}}[/latex] is :
A. 2775
B. 150
C. 5550
D. None of these
Answer : Option C
Explanation: [latex]{75}_{{P}_{2}}[/latex] = [latex]\frac{75!}{75-2!}[/latex]
= [latex]\frac{75!}{73!}[/latex]
= [latex]\frac{75*74*(73!)}{73!}[/latex]
= (75 * 74) = 5550.
3. In how many ways can the letters of the word 'LEADER' be arranged ?
A. 72
B. 144
C. 360
D. 720
Answer : Option C
Explanation: In the word 'MATHEMATICS', we treat the vowels AEAI as one letter.
The word 'LEADER' contains 6 letters, namely 1L, 2E, 1A, 1D and 1R.
∴ Required number of ways = [latex]\frac{6!}{(1!)(2!)(1!)(1!)(2!)}[/latex] = 360
4. How many words with or without meaning, can be formed by using all the letters of the word, 'DELHI', using each letter exactly once ?
Answer : Option D
Explanation: The word 'DELHI' contains 5 different letters.
Required number of words = Number of arrangements of 5 letters, taken all at a time = [latex]{5}_{{P}_{5}}[/latex] = 5 !
= (5 *4 *3 *2 *1) = 120.
5. In how many different ways can the letters of the word 'RUMOUR' be arranged ?
A. 180
B. 90
C. 30
D. 720
Answer : Option A
Explanation: The word 'RUMOUR' contains 6 letters, namely 2R, 2U, 1M and 1U.
∴ Required number of ways = [latex]\frac{6!}{(2!)(2!)(1!)(1!)}[/latex] = 180