1. A right triangular pyramid XYZB is cut from cube as shown in figure. The side of cube is 16 cm. X, Y and Z are mid points of the edges of the cube. What is the total surface area (in [latex]{cm}^{2}[/latex]) of the pyramid?
A. 48[√3 + 1]
B. 24[4 + √3]
C. 28[6 + √3]
D. 28[6 + √3]
Answer:Option D
Explanation:
In the figure;
[latex]{(XY)}^{2}[/latex] = 64 + 64
XY = 8√2 cm
∴ YZ = ZX = 8√2 cm
∴ Base area of the pyramid = [latex]\frac{√3}{4}[/latex] × 128 = 32√3 [latex]{cm}^{2}[/latex]
Height of rest three surfaces of the pyramid (as in above figure) = 4√2 cm
Area of 3 surfaces of pyramid = 3 × [latex]\frac{1}{2}[/latex] × 4√2 × 8√2 = 96 [latex]{cm}^{2}[/latex]
Total surface area = 96 + 32√3 = 32 (3 + √3) [latex]{cm}^{2}[/latex]
2. In the given figure, two squares of sides 8 cm and 20 cm are given. What is the area (in cm2) of the shaded part?
A. [latex]\frac{120}{7}[/latex]
B. [latex]\frac{160}{7}[/latex]
C. [latex]\frac{180}{7}[/latex]
D. [latex]\frac{240}{13}[/latex]
Answer:Option B
Explanation:
Here ∆AXB and ∆AFG will be similar
⇒[latex]\frac{8}{28}[/latex] =[latex]\frac{BX}{20}[/latex]
⇒ BX =[latex]\frac{40}{7}[/latex]
⇒ Area of ∆AXB = [latex]\frac{1}{2}[/latex] × (AB × BX)
⇒ Area of ∆AXB = ½ × (8 × [latex]\frac{40}{7}[/latex])
∴ Area of ∆AXB = [latex]\frac{160}{7}[/latex] [latex]{cm}^{2}[/latex]
3. A hemisphere is kept on top of a cube. Its front view is shown in the given figure. The total height of the figure is 21 cm. The ratio of curved surface area of the hemisphere and total surface area of cube is 11 ∶ 42. What is the total volume (in cm 3) of figure?
A. 3318.33
B. 3462.67
C. 3154.67
D. 3154.67
Answer:Option B
Explanation:
Curved surface area of hemisphere/Total surface area of cube =[latex]\frac{2π{r}^{2}}{6{a}^{2}}[/latex] = [latex]\frac{11}{42}[/latex]
⇒ 14 × [latex]\frac{22}{7}[/latex]× [latex]{r}^{2}[/latex] = 11[latex]{a}^{2}[/latex]
⇒ a = 2r
And given total height of the figure is 21 cm,
⇒ a + r = 21
⇒ r = 7 cm and a = 14 cm
∴ Volume of the figure = [latex]{a}^{3}[/latex] + [latex]\frac{2}{3}[/latex]π[latex]{r}^{3}[/latex]
⇒ 143 + [latex]\frac{2}{3}[/latex] × [latex]\frac{22}{7}[/latex] ×[latex]{7}^{3}[/latex]
⇒ 2744 + 718.67 = 3462.67 [latex]{cm}^{3}[/latex]
4. The perimeter of a square is 40 cm, find its area?
A. 100 sq cm
B. 25 sq cm
C. 50 sq cm
D. 160 sq cm
Answer:Option A
Explanation:
From the given data,
Perimeter of a square = 40 cm
⇒ 4 × side = 40 cm
⇒ side = 10 cm
Area of the square = side × side = 10 cm × 10 cm = 100 sq.cm
5. The base of a prism is a trapezium. The length of the parallel sides of the trapezium are 5 cm and 15 cm respectively and the distance between the parallel sides is 12 cm. If the volume of trapezium prism is 1200 cm3. What the total surface area of the trapezoidal prism?
A. 400 [latex]{cm}^{2}[/latex]
B. 500 [latex]{cm}^{2}[/latex]
C. 700 [latex]{cm}^{2}[/latex]
D. 600 [latex]{cm}^{2}[/latex]
Answer:Option C
Explanation:
As we know, volume of the trapezium prism = base area(area of trapezium) × height
⇒ 1200 = [latex]\frac{1}{2}[/latex] × (5 + 15) × 12 × h
⇒ h = 10 cm
∵ Lateral surface area = perimeter of trapezium × height
Total surface area of the trapezoidal prism
⇒ 2 × base area(area of trapezium) + lateral surface area
⇒ 2 × [latex]\frac{1}{2}[/latex] × (5 + 15) × 12 + perimeter of trapezium × height
⇒ 240 + (15 + 13 + 5 + 13) × 10
⇒ 240 + 460 = 700 [latex]{cm}^{2}[/latex]
∴ Total surface area of the trapezoidal prism = 700 [latex]{cm}^{2}[/latex]