Consider a right angled triangle [latex]\bigtriangleup[/latex] ABC, Where [latex]\angle[/latex]ACB = [latex]\theta[/latex],
1. Sin[latex]\theta[/latex] is equal to ratio between perpendicular and hypotenuse.
2. Cos[latex]\theta[/latex] is equal to ratio between base and hypotenuse.
3. Tan[latex]\theta[/latex] is equal to ratio between perpendicular and base.
4. Cosec[latex]\theta[/latex] is the inverse of sin[latex]\theta[/latex].
5. Sec[latex]\theta[/latex] is the inverse of cos[latex]\theta[/latex].
6. Cot[latex]\theta[/latex] is the inverse of tan[latex]\theta[/latex].
Values of T-ratios:
[latex]\theta[/latex] |
[latex]0^{\circ}[/latex] |
[latex](\frac{\pi}{6}) \\ {30}^{\circ}[/latex] |
[latex](\frac{\pi}{4}) \\ {45}^{\circ}[/latex] |
[latex](\frac{\pi}{3}) \\ {60}^{\circ}[/latex] |
[latex](\frac{\pi}{2}) \\ {90}^{\circ}[/latex] |
Sin[latex]\theta[/latex] |
0 |
[latex]\frac{1}{2}[/latex] |
[latex]\frac{1}{\sqrt{2}}[/latex] |
[latex]\frac{\sqrt{3}}{2}[/latex] |
1 |
Cos[latex]\theta[/latex] |
1 |
[latex]\frac{\sqrt{3}}{2}[/latex] |
[latex]\frac{1}{\sqrt{2}}[/latex] |
[latex]\frac{1}{2}[/latex] |
0 |
Tan[latex]\theta[/latex] |
0 |
[latex]\frac{1}{\sqrt{3}}[/latex] |
1 |
[latex]\sqrt{3}[/latex] |
not defined |
Angle of elevation:
Assume that a person from a point O looks up at an object A, placed above the level of eye. Then, the angle which the line of sight makes with the horizontal through O, is called angle of elevation of A as seen from O.
Therefore, Angle of elevation of A from O = [latex]\angle[/latex]BOD.
Angle of Depression:
Assume that a person from a point O looks down at an object B, placed below the level of eye, then the angle which the line of sight makes with the horizontal through O, is called the angle of depression of B as seen from O.
Example 1:
If the height of a pole is [latex]2\sqrt{3}[/latex] meters and the length of its shadow is 2 meters, find the angle of elevation of the sun.
Solution:
Let AB be the pole and AC be its shadow.
Let angle of elevation, ∠ ABC = θ.
Then, AB = [latex]2\sqrt{3}[/latex]m, AC = 2m.
tan θ = [latex]\frac{AB}{AC}[/latex] = [latex]\frac{2\sqrt{3}}{2}[/latex] = [latex]\sqrt{3}[/latex]
θ = 60°
So, the angle of elevation is 60°
Example 2:
A ladder leaning againt a wall makes an angle of 60° with the ground. If the length of the ladder is 19m, find the distance of the foot of the ladder from the wall.
Solution:
Let AB be the wall and BC be the ladder.
Then, ∠ ABC = 60° and BC = 19 m.
Let AC = x meters
[latex]\frac{AC}{BC}[/latex] = cos 60°
[latex]\frac{x}{19}[/latex] = [latex]\frac{1}{2}[/latex]
[latex]x[/latex] = [latex]\frac{19}{2}[/latex] = 9.5.
Distance of the foot of the ladder from the wall = 9.5 m.
Example 3:
The angle of elevation of the top of a tower at a point on the ground is 30°. On walking 24m towards the tower, the angle of elevation becomes 60°. Find the height of the tower.
Solution:
Let AB be the tower and C and D be the points of observation. Then,
[latex]\frac{AB}{AD}[/latex] = tan 60° = [latex]\sqrt{3}[/latex] ⇒ AD = [latex]\frac{AB}{\sqrt{3}}[/latex] = [latex]\frac{h}{3}[/latex]
[latex]\frac{AB}{AC}[/latex] = tan 30° = [latex]\frac{1}{\sqrt{3}}[/latex] ⇒ AC = AB x [latex]\sqrt{3}[/latex] = [latex]h\sqrt{3}[/latex].
CD = (AC - AD) = [latex](h\sqrt{3} - \frac{h}{\sqrt{3}})[/latex]
∴ [latex]h\sqrt{3} - \frac{h}{\sqrt{3}}[/latex] = 24 ⇒ h = [latex]12\sqrt{3}[/latex] = (12 x 1.73) = 20.76.
Hence, the height of the tower is 20.76 m.