A factor which decisively affects the nature or outcome of something is called a Determinant. A quantity obtained by the addition of products of the elements of a square matrix according to a given rule.
Formulae
Matrices: A, B, C
Elements of a matrix: [latex]a_i, b_i, a_{ij}, b_{ij}, c_{ij}[/latex]
Determinant of a matrix: det A
Minor of an element [latex] a_{ij}: M_{ij}[/latex]
Cofactor of an element [latex] a_{ij}: C_{ij}[/latex]
Transpose of a matrix: [latex] A^T, \widetilde{A}[/latex]
Adjoint of a matrix: adj A
Trace of a matrix: tr A
Inverse of a matrix: [latex]A^-1[/latex]
Real number: k
Real variables: [latex]x_i[/latex]
Natural numbers: m, n
1. Second Order Determinant
det A = [latex]\begin{vmatrix}
a_1 & b_1 \\
a_2 & b_2 \\
\end{vmatrix}[/latex] = [latex]a_1 b_2 -a_2 b_1[/latex]
2. Third Order Determinant
det A = [latex]\begin{vmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}\\
\end{vmatrix}[/latex] = [latex]a_{11} a_{22} a_{33} + a_{12} a_{23} a_ {31} + a_{13} a_{21} a_{31} -
a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33} - a_{13} a_ {22} a_{31}[/latex]
3. Third Order Determinant4. N-th Order Determinant
det A = [latex]\begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n}\\
a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n}\\
\cdots & \cdots & \cdots & \cdots & \cdots & \\
a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{in}\\
\cdots & \cdots & \cdots & \cdots & \cdots & \\
a_{n1} & a_{n2} & \cdots & a_{nj} & \cdots & a_{nn}\\
\end{vmatrix}[/latex]
5. Minor
The minor [latex]M_{ij}[/latex] associated with the element [latex]a_{ij}[/latex] of n-th order matrix A is the (n -1)-th order determinant derived from the matrix A by deletion of its i-th row and j-th column.
6. Cofactor
[latex]C_{ij} = (-1)^{i+j} M_{ij}[/latex]
7. Laplace Expansion of n-th Order Determinant
Laplace expansion by elements of the i-th row
det A = [latex]\displaystyle\sum_{j=1}^{n} a_{ij} C_{ij}, i = 1, 2..., n[/latex]
Laplace expansion by elements of the j-th column
det A = [latex]\displaystyle\sum_{i=1}^{n}[/latex][latex]a_{ij} C_{ij}, i = 1, 2..., n[/latex]