# Important Fact 1 - Converting a Decimal to a Fraction
Step 1: Divide the decimal by 1, i.e. [latex]\frac{decimal}{1}[/latex]
Step 2: For Every number after the decimal point multiply by 10 for both top and bottom (i.e. if there are two numbers after the decimal point, then use 100, if there are three use 1000)
Step 3: Reduce or simplify the fraction
Example 1:
Convert 0.75 to a fraction.
Solution:
Step 1: Divide the 0.75 by 1,
[latex]\frac{0.75}{1}[/latex]
Step 2: Multiply both top and bottom by 100 (because there are 2 digits after the decimal point so that is 10 × 10 = 100)
[latex]\frac{0.75 \times 100}{1 \times 100}[/latex] = [latex]\frac{75}{100}[/latex]
Step 3: Simplify the fraction,
[latex]\frac{75}{100}[/latex] = [latex]\frac{15}{20}[/latex] = [latex]\frac{3}{4}[/latex] (Divide by 5)
Here [latex]\frac{75}{100}[/latex] is called a decimal fraction and [latex]\frac{3}{4}[/latex] is called a common fraction.
Example 2
Convert 0.625 to a fraction
Solution:
Step 1: Divide the 0.625 by 1,
[latex]\frac{0.625}{1}[/latex]
Step 2: Multiply both top and bottom by 100 (because there are 3 digits after the decimal point so that is 10 × 10 x 10 = 1000)
[latex]\frac{0.625 \times 1000}{1 \times 1000}[/latex] = [latex]\frac{625}{1000}[/latex]
Step 3: Simplify the fraction,
[latex]\frac{625}{1000}[/latex] (Divide by 25) = [latex]\frac{25}{40}[/latex] (Divide by 5) = [latex]\frac{5}{8}[/latex]
Example 3
Convert 2.35 to a fraction
Solution:
When there is a whole number part, put the whole number aside and bring it back at the end.
So here, Put the 2 aside and just work on 0.35
Step 1: Divide the 0.35 by 1,
[latex]\frac{0.35}{1}[/latex]
Step 2: Multiply both top and bottom by 100 (because there are 2 digits after the decimal point so that is 10 × 10 = 100)
[latex]\frac{35 \times 100}{1 \times 100}[/latex] = [latex]\frac{35}{100}[/latex]
Step 3: Simplify the fraction,
[latex]\frac{35}{100}[/latex] = [latex]\frac{7}{20}[/latex] (Divide by 5)
Bring back 2 to make a mixed fraction : 2 [latex]\frac{7}{20}[/latex]
# Important Fact 2 - Comparision of Fraction
Comparison is the arrangement of given fractions in ascending order and descending order. so first we need to convert the given fractions into decimal numbers and then it is easy to arrange them accordingly.
Example 1
Arrange the fractions [latex]\frac{1}{2}; \frac{3}{4}; \frac{5}{6}[/latex] in ascending order?
Solution:
by converting, 0.5; 0.75; 0.833
Ascending order is 0.833 > 0.75 > 0.5
Therefore, [latex]\frac{5}{6} >\frac{3}{4} >\frac{1}{2}[/latex].
Example 2
Arrange the fractions [latex]\frac{3}{5}; \frac{4}{7}; \frac{8}{9} and \frac{9}{11}[/latex] in their descending order. (
R,.B.I 2003)
Solution:
Clearly, [latex]\frac{3}{5}[/latex] = 0.5, [latex]\frac{4}{7}[/latex] = 0.571, [latex]\frac{8}{9}[/latex] = 0.88, [latex]\frac{8}{11}[/latex] = 0.818.
Now, 0.88 > 0.818 > 0.6 > 0.571.
∴ [latex]\frac{8}{9}[/latex], [latex]\frac{9}{11}[/latex], [latex]\frac{3}{5}[/latex], [latex]\frac{4}{7}[/latex]
.
Example 3
Arrange the fractions [latex]\frac{5}{8}; \frac{7}{12}; \frac{13}{16}, \frac{16}{29} and \frac{3}{4}[/latex] in Ascending order of magnitude.
Solution:
Converting each of the given fractions into decimal form, we get:
[latex]\frac{5}{8}[/latex] = 0.625, [latex]\frac{7}{12}[/latex] = 0.5833, [latex]\frac{13}{16}[/latex] = 0.8125, [latex]\frac{16}{29}[/latex] = 0.5517 and [latex]\frac{3}{4}[/latex] = 0.75.
Now, 0.5517 < 0.5833 < 0.625 < 0.75 < 0.8125.
∴ [latex]\frac{16}{29}[/latex] < [latex]\frac{7}{12}[/latex] < [latex]\frac{5}{8}[/latex] < [latex]\frac{3}{4}[/latex] < [latex]\frac{13}{16}[/latex].
Formula 1: Why is [latex](a+b)^2 = a^2 + b^2 +2ab[/latex]
Explanation: This is the first formula in geometry and algebra of mathematics.
Introduction to Geometrical Approach:
- Line with a point = a+b
- Square Area = [latex]a^{2}[/latex]
- Rectangle Area = ab
Prove [latex](a+b)^2 = a^2 + b^2 +2ab[/latex] in geomentry:
- Draw a line with a point which divides a, b
- Total distance of this line = a+b
- Now find out the square of a+b ie. [latex](a+b)^{2}[/latex]
- The above diagram represents – a + b is a line and the square are is
[latex]a^{2}[/latex] + [latex]b^{2}[/latex] + 2ab
Hence proved [latex](a+b)^{2}[/latex] = [latex]a^{2}[/latex] + [latex]b^{2}[/latex] + 2ab
Prove [latex](a+b)^2 = a^2 + b^2 +2ab[/latex] in Algebra:
[latex](a+b)^{2}[/latex] = (a+b)*(a+b)
= (a*a + a*b) + (b*a + b*b)
= ([latex]a^{2}[/latex] + ab) + (ba + [latex]b^{2}[/latex])
= [latex]a^{2}[/latex] + 2ab + [latex]b^{2}[/latex]
Hence proved [latex](a+b)^{2}[/latex] = [latex]a^{2}[/latex] + [latex]b^{2}[/latex] + 2ab
Example 1:
Expand the term [latex](3x + 4y)^{2}[/latex] using the identity [latex](a+b)^{2}[/latex] = [latex]a^{2}[/latex] + [latex]b^{2}[/latex] + 2ab
Solution:
[latex](3x + 4y)^{2}[/latex] = [latex](3x)^{2}[/latex] + [latex](4y)^{2}[/latex] + 2(3x)(4y) = [latex]9x^{2}[/latex] + [latex]16y^{2}[/latex] + 24xy
∴ [latex](3x + 4y)^{2}[/latex] = [latex]9x^{2}[/latex] + [latex]16y^{2}[/latex] + 24xy
Example 2:
Expand the term [latex](\sqrt{2}x + 4y)^{2}[/latex] using the identity [latex](a+b)^{2}[/latex] = [latex]a^{2}[/latex] + [latex]b^{2}[/latex] + 2ab
Solution:
[latex](\sqrt{2}x + 4y)^{2}[/latex] = [latex](\sqrt{2}x)^{2}[/latex] + [latex](4y)^{2}[/latex] + 2[latex](\sqrt{2}x)[/latex](4y) = [latex]2x^{2}[/latex] + [latex]16y^{2}[/latex] + 8[latex]\sqrt{2}[/latex]xy
∴ [latex](\sqrt{2}x + 4y)^{2}[/latex] = [latex]2x^{2}[/latex] + [latex]16y^{2}[/latex] + 8[latex]\sqrt{2}[/latex]xy
Example 3:
Expand the term [latex](x + \frac{1}{x})^{2}[/latex] using the identity [latex](a+b)^{2}[/latex] = [latex]a^{2}[/latex] + [latex]b^{2}[/latex] + 2ab
Solution:
[latex](x + \frac{1}{x})^{2}[/latex] = [latex]x^{2}[/latex] + [latex]\frac{1}{x^{2}}[/latex] + 2[latex](x)(\frac{1}{x})[/latex] = [latex]x^{2}[/latex] + [latex]\frac{1}{x^{2}}[/latex] + 2
∴ [latex](x + \frac{1}{x})^{2}[/latex] = [latex]x^{2}[/latex] + [latex]\frac{1}{x^{2}}[/latex] + 2