1. Suppose it is 3 o’clock. After 20 minutes the angle between the smaller and bigger hands
will be
A. 20º
B. 30º
C. 110º
D. 120º
Answer - Option A
Explanation -
Degrees at 3 : 20
= 5 min distance – [latex]\frac{1}{3}[/latex] (5 min) distance
= 30 – 10 = 20 degrees
2. The radius of the circumcircle of an equilateral triangle of side 12 cm is
A. [latex]\frac{4}{3} \sqrt{3}[/latex] cm
B. 4 [latex]\sqrt{3} [/latex] cm
C. 4 [latex]\sqrt{2} [/latex]
D. [latex]\frac{4}{3} \sqrt{2}[/latex] cm
Answer - Option B
Explanation -
Circumcentre of a triangle is the point of intersection of the right bisectors of its sides
i.e, sin60º = [latex]\frac{QM}{QC}[/latex]
[latex]\frac{\sqrt{3}}{2}[/latex] = [latex]\frac{6}{QC}[/latex]
QC = [latex]\frac{6 * 2}{\sqrt{3}} = 4 \sqrt{3}[/latex] cm
3. If the perimeter of an isosceles right triangle is(6 + 3[latex]\sqrt{2} [/latex]) m, then the area of the triangle is
A. 4.5 [latex]{m}^{2}[/latex]
B. 5.4 [latex]{m}^{2}[/latex]
C. 9 [latex]{m}^{2}[/latex]
D. 81 [latex]{m}^{2}[/latex]
Answer - Option A
Explanation -
Perimeter = (6 + 3[latex]\sqrt{2} [/latex]) m
i.e, x + x + [latex]\sqrt{2} x = 6 + 3\sqrt{2} [/latex]
2x + [latex]\sqrt{2} x = 6 + 3\sqrt{2} [/latex]
x = [latex]\frac{6 + 3\sqrt{2}}{2 + \sqrt{2}}[/latex] = [latex]\frac{3(2 + \sqrt{2})}{2 + \sqrt{2}}[/latex]
= 3
i.e, Required area of triangle
[latex]\frac{1}{2}[/latex] * x * x = [latex]\frac{1}{2} {x}^{2}[/latex]
[latex]\frac{1}{2} * {3}^{2}[/latex] = 4.5 [latex]{m}^{2}[/latex]
4. If two diameters of a circle intersect each other at right angles, then the quadrilateral formed by joining their end points is a
A. Rhombus
B. Rectangle
C. Square
D. Parallelogram
Answer - Option C
5. Of all the chords of a circle passing through a given point in it, the smallest is that which
A. is trisected at the point
B. is bisected at the point
C. passes through the center
D. none of these
Answer - Option D
6. I n a tr iangle ABC, t he lengths of the sides AB, AC and BC are 3, 5 and 6 cm respectively. If a point D on BC is drawn such that the line AD bisects the angle A internally, then what is the length of BD?
A. 2 cm
B. 2.25 cm
C. 2.5 cm
D. 3 cm
Answer - Option B
Explanation -
i.e, Divide BC = 6 in the ratio 3 : 5
Thus BD = [latex]6 \frac{3}{3 + 5}[/latex] = [latex]\frac{9}{4}[/latex] = 2.25 cm
7. With the vertices of a △ABC as centers, three circles are described each touching the other two externally. If the sides of the triangle are 4, 6 and 8 cm respectively, then the sum of the radii of the three circles equals
Answer -9 Option D
Explanation -
AB = [latex]{r}_{1} + {r}_{2}[/latex] = 4
BC = [latex]{r}_{2} + {r}_{3}[/latex] = 6
CA = [latex]{r}_{3} + {r}_{1}[/latex] = 8
i.e, 2[latex]({r}_{1} + {r}_{2}+ {r}_{3})[/latex] = 4 + 6 +8
[latex]({r}_{1} + {r}_{2}+ {r}_{3})[/latex] = 9
8. In the figure given below, O is the center of the circle. If ∠OBC = 37º, the ∠BAC is equal to
Answer - Option C
Explanation -
∠OBC = 37º
OB = OC = radius
i.e, ∠OCB = ∠OBC = 37º
i.e, ∠BOC = 180º – (37º + 37º) = 106º
Now, ∠BAC = [latex]\frac{1}{2}[/latex] ∠BOC = [latex]\frac{1}{2}[/latex] * 106 = 53º
9. If, in the following figure, PA = 8 cm, PD = 4 cm, CD = 3 cm, then AB is equal to
A. 3.0 cm
B. 3.5 cm
C. 4.0 cm
D. 4.5 cm
Answer - Option D
Explanation -
From the given figure,
PC * PD = PA * PB
i.e, (4 + 3) * 4 = 8 * PB
PB = [latex]\frac{28}{8}[/latex] = 3.5 cm
i.e, AB = AP – BP = 8 – 3.5
= 4.5 cm
10. Two circles of unit radius touch each other and each of them touches internally a circle of radius two, as shown in the following figure. The radius of the circle which touches all the three circles is
A. 5
B. [latex]\frac{3}{2}[/latex]
C. [latex]\frac{2}{3}[/latex]
D. None of these
Answer - Option C
Explanation -
[latex]O{C}_{1} = 1, O{C}_{1} = r + 1[/latex]
OC = AC – AO = CD – AO,
[AC and CD are radius of the bigger circle]
i.e, OC = 2 – r
[latex]{O{C}_{1}}^{2} = {O{C}_{1}}^{2} + {OC}^{2}[/latex]
[latex]{r + 1}^{2} = 12 + {(2 -r)}^{2}[/latex]
[latex]{r}^{2} + 2r + 1 = 1 + 4 - 4r + {r)}^{2}[/latex]
6r = 4
r = [latex]\frac{4}{6}[/latex] = [latex]\frac{2}{3}[/latex]
11. The two sides of a right triangle containing the right angle measure 3 cm and 4 cm. The radius of the incircle of the triangle is
A. 3.5 cm
B. 1.75 cm
C. 1 cm
D. 0.875 cm
Answer - Option C
Explanation -
If incircle of a triangle ABC touches BC at D,then
|BC - CD| = |AB - AC|
In our case, AC = 5, AB = 3
AC – AB = 2
i.e, CD – BD = 2
In our case, BC = 4
BD + DC = 4 and – BD + DC = 2
CD = 3
BD = 1 = OE
= Radius of the incircle
12. If P and Q are the mid points of the sides CA and CB respectively of a triangle ABC, right-angled at C. Then the value of 4 ([latex]A{Q}^{2} + B{P}^{2}[/latex]) is equal to
A. 4 ([latex]B{C}^{2}[/latex]
B. 5 ([latex]A{B}^{2}[/latex]
C. 2 ([latex]A{C}^{2}[/latex]
D. 2 ([latex]B{C}^{2}[/latex]
Answer - Option B
Explanation -
[latex]A{Q}^{2} = A{C}^{2} + Q{C}^{2}[/latex]
[latex]B{P}^{2} = B{C}^{2} + C{P}^{2}[/latex]
[latex]A{Q}^{2} + B{P}^{2} = (A{C}^{2} + Q{C}^{2}) + (B{C}^{2} + C{P}^{2})[/latex]
=[latex]A{B}^{2} + P{Q}^{2}[/latex]
= [latex]A{B}^{2} ({AB \frac{1}{2}})^{2}[/latex]
(i.e, [latex]AB \frac{1}{2}[/latex])
= [latex]A{B}^{2}\frac{5}{4}[/latex]
= [latex]4(A{Q}^{2} + B{P}^{2}) = 5A{B}^{2}[/latex]
13. If one of the diagonals of a rhombus is equal to its side, then diagonals of the rhombus are in the ratio
A. [latex]\sqrt{3} [/latex] : 1
B. [latex]\sqrt{2} [/latex] : 1
C. 3 : 1
D. 2 : 1
Answer - Option A
Explanation -
Area of a rhombus = [latex]\frac{1}{2}[/latex](product of their diagnonals)
= [latex]\frac{1}{2}[/latex]xy
Again, Area of a rhombus = 2 * Area of equilateral triangle ABD
= 2 * [latex]\frac{\sqrt{3}}{4}{x}^{2}[/latex]
= [latex]\frac{\sqrt{3}}{2}{x}^{2}[/latex]
From (i) and (ii), we have
[latex]\frac{1}{2}[/latex]xy = [latex]\frac{\sqrt{3}}{2}{x}^{2}[/latex]
[latex]\frac{y}{x} = \frac{\sqrt{3}}{1}[/latex]
y : x = [latex]\sqrt{3}[/latex] : 1
14. If the sides of a right tringle are x, x + 1 and x – 1, then the hypotenuse is
Answer - Option A
Explanation -
Let (x + 1) be the hypotenuse
i.e, [latex]{(x + 1)}^{2} = {x}^{2} + {(x + 1)}^{2}[/latex]
[latex]{x}^{2} + 2x + 1 = {x}^{2} + {x}^{2} - 2x + 1[/latex]
[latex]{x}^{2} - 4x = 0[/latex]
x(x + 4) = 0
x = 4, as x ≠ 0
i.e, Hypotenuse = 4 + 1 = 5
15. ABCD is a square, F is mid point of AB and E is a point on BC such that BE is one-third of BC. If area of △FBE = 108 [latex]{m}^{2}[/latex], then the length of AC is
A. 63 m
B. 36 [latex]\sqrt{2}[/latex] m
C. 63 [latex]\sqrt{2} [/latex] m
D. 72 [latex]\sqrt{2} [/latex] m
Answer - Option B
Explanation -
Let the side of the square be 6K
i.e, [latex]\frac{1}{2}[/latex] * 3K * 2K = 108
K = 6
i.e, Side of the square = 36m
[latex]A{C}^{2} = C{D}^{2} + D{C}^{2}[/latex]
[latex] = {36}^{2} + {36}^{2}[/latex]
= 2 * [latex] = {36}^{2}[/latex]
AC = 36 [latex]\sqrt{2}[/latex] m