UPSC CDS - SPLessons

UPSC CDS II Mathematics Quiz 1

Home > > Tutorial
SPLessons 5 Steps, 3 Clicks
5 Steps - 3 Clicks

UPSC CDS II Mathematics Quiz 1

shape Introduction

UPSC CDS II Selection Process is the combination of Written Examination and Intelligence and Personality Test. Written Examination is a Combination of English, General Knowledge, and Elementary Mathematics with separate timings for each section.
The article UPSC CDS II Mathematics Quiz 1 presents the UPSC CDS II Mathematics section questions and answers with detailed explanation.

shape Quiz

1. If the cost price of 50 oranges is equal to the selling price of 40 oranges, then the profit percent is?
    A. 5 B. 10 C. 20 D. 25

Answer: Option D
Explanation: 50 CP = 40 SP [latex]\frac{CP}{SP}[/latex] = [latex]\frac{40}{50}[/latex] = 10 Profit Profit % = [latex]\frac{10}{40}[/latex]= × 100 = 25%
2. A number is as much greater than 36 as is less than 86. Find the number :
    A. 38 B. 43 C. 61 D. 73

Answer: Option C
Explanation: Let the number be z. then, z – 36 = 86 – z ⇒ 2z = 86 + 36 ⇒ 2z = 122. ⇒ z = 61. Hence, the required number is 61
3. In the annual examination, Ankita got 10% less marks than Eakta in Mathematics. Ankita got 81 marks. The marks of Eakta are?
    A. 90 B. 87 C. 88 D. 89

Answer: Option A
Explanation: 10% = [latex]\frac{1}{10}[/latex] Ankita Eakta 9 10 ↓×9 ↓×9 81 90 Hence, marks obtained by Eakta = 90
4. The ratio of the number of boys to that of girls in a school is 4 : 1. If 75% of boys and 70% of the girls are scholarship-holders, then the percentage of students who do not get scholarship is?
    A. 50% B. 28% C. 75% D. 26%

Answer: Option D
Explanation: Let the number of boys = 400 Let the number of girls = 100 Total number of students who do not get scholarship = 400 × [latex]\frac{25}{100}[/latex] + 100 × [latex]\frac{30}{100}[/latex] = 100 + 30 = 130 Required percentage = [latex]\frac{130}{500}[/latex]= × 100 = 26%
5. If the price of a commodity is increased by 50%. By what fraction must its consumption be reduced so as to keep the same expenditure on its consumption?
    A. [latex]\frac{1}{4}[/latex] B. [latex]\frac{1}{3}[/latex] C. [latex]\frac{1}{2}[/latex] D. [latex]\frac{2}{3}[/latex]

Answer: Option B
Explanation: % change =[latex]\frac{R}{(100 ± R)}[/latex] × 100% Required answer = [latex]\frac{50}{(100 + 50)}[/latex] = [latex]\frac{1}{3}[/latex]
1. If x = 2 then the value of x3 + 27x2 + 243x + 631 is:
    A. 1211 B. 1231 C. 1233 D. 1321

Answer: Option C
Explanation: Given equation, f(x) = x[latex]^{3}[/latex]+ 27x[latex]^{2}[/latex] + 243x + 631 ⇒ x(x[latex]^{2}[/latex] + 27x+ 243) + 631 Now, put the value of x = 2 ⇒ 2(2[latex]^{2}[/latex] + 27 × 2 + 243) + 631 ⇒ 2 (4 + 54 + 243) + 631 ⇒ 2(301) + 631 = 602 + 631 = 1233.
2. When 2x + [latex]\frac{2}{x}[/latex]2 = 3, then value of x[latex]^{3}[/latex] + [latex]\frac{1}{x}[/latex] + [latex]\frac{2}{x^{3}}[/latex] is
    A. [latex]\frac{2}{7}[/latex] B. [latex]\frac{7}{8}[/latex] C. [latex]\frac{7}{2}[/latex] D. [latex]\frac{8}{7}[/latex]

Answer: Option B
Explanation: Given, 2x + [latex]\frac{2}{x}[/latex] = 3 or [latex]\frac{(x + 1)}{2}[/latex] = [latex]\frac{3}{2}[/latex] Cubing both sides, we get x[latex]^{3}[/latex]+ [latex]\frac{1}{x^{3}}[/latex] + 3 [latex]\frac{(x + 1) }{x}[/latex]= [latex]\frac{27}{8}[/latex] or, x[latex]^{3}[/latex] + [latex]\frac{1}{x^{3}}[/latex]+ 3 × [latex]\frac{3}{2}[/latex] = [latex]\frac{27}{8}[/latex] or, x[latex]^{3}[/latex] + [latex]\frac{1}{x^{3}}[/latex] = [latex]\frac{27}{8}[/latex] – [latex]\frac{9}{2}[/latex] = [latex]\frac{– 9}{8}[/latex] or, x[latex]^{3}[/latex] + [latex]\frac{1}{x^{3}}[/latex] + 2 = 2 – [latex]\frac{9}{8}[/latex]9 ⇒ [latex]\frac{7}{8}[/latex]7
3. If x = 332, y = 333, z = 335 then the value of x[latex]^{3}[/latex] + y[latex]^{3}[/latex] + z[latex]^{3}[/latex] – 3xyz = ?
    A. 1000 B. 9000 C. 7000 D. 65000

Answer: Option C
Explanation: ∵ ( x[latex]^{3}[/latex] + y[latex]^{3}[/latex] + z[latex]^{3}[/latex] – 3xyz) = (x + y + z) (x[latex]^{2}[/latex] + y[latex]^{2}[/latex]+ z[latex]^{2}[/latex] – xy – yz – zx) = (x + y + z) × [latex]\frac{1}{2}[/latex] [(x – y)[latex]^{2}[/latex] + (y – z)[latex]^{2}[/latex] + (z – x)[latex]^{2}[/latex]] On putting the values, we get = 1000 × [latex]\frac{1}{2}[/latex] [(332 – 333)[latex]^{2}[/latex] + (333 – 335)[latex]^{2}[/latex] + (335 – 332)[latex]^{2}[/latex]] = 1000 × [latex]\frac{1}{2}[/latex] [1 + 4 + 9] = 7000
4. If [latex]\frac{x + 1}{x}[/latex] = 5, then [latex]\frac{2x}{3x^{2} – 5x + 3}[/latex] is equal to
    A. 5 B. [latex]\frac{1}{5}[/latex] C. 3 D. [latex]\frac{1}{3}[/latex]

Answer: Option B
Explanation: x + [latex]\frac{1}{x}[/latex] = 5 ⇒ x[latex]^{2}[/latex] – 5x + 1 = 0 Equation multiplied by 3, then ⇒ 3x[latex]^{2}[/latex] – 15x + 3 = 0 ⇒ 3x[latex]^{2}[/latex] + 3 = 15x ∴ [latex]\frac{2x}{3x^{2} – 5x + 3}[/latex] = [latex]\frac{2x}{15x – 5x}[/latex] = [latex]\frac{2x}{10x}[/latex] = [latex]\frac{1}{5}[/latex]
5. If ab + bc + ca = 0, then the value of [latex]\frac{1}{a^{2}– bc }[/latex] + [latex]\frac{1}{b^{2} – ac}[/latex] + [latex]\frac{1}{c^{2} – ab}[/latex] is
    A. 2 B. –1 C. 0 D. 1

Answer: Option C
Explanation: ab + bc + ca = 0 ⇒ ab + ca = –bc ∴ a[latex]^{2}[/latex] – bc = a[latex]^{2}[/latex] + ab + ca = a(a + b + c) Similarly, b[latex]^{2}[/latex] – ac = b(a + b + c) c[latex]^{2}[/latex] – ac = c(a + b + c) ∴ [latex]\frac{1}{a2 – bc }[/latex] + [latex]\frac{1}{b2 – ac}[/latex] + [latex]\frac{1}{c2 – ab}[/latex] = [latex]\frac{1}{a(a + b + c)}[/latex] + [latex]\frac{1}{b(a + b + c)}[/latex] + [latex]\frac{1}{c(a + b + c)}[/latex] = [latex]\frac{bc + ac + ab}{abc(a + b + c)}[/latex] = 0
1. Evaluate: (sin [latex]\frac{π}{6}[/latex] + cos [latex]\frac{π}{3}[/latex] – tan [latex]\frac{3π}{4}[/latex] + cosec [latex]\frac{2π}{2}[/latex])
    A. 1 B. 0 C. 3 D. 5

Answer: Option A
Explanation: We know that: sin [latex]\frac{π}{6}[/latex] = sin 30° = [latex]\frac{1}{2}[/latex] , cos [latex]\frac{π}{3}[/latex] = cos 60° = [latex]\frac{1}{2}[/latex] ; tan [latex]\frac{π}{4}[/latex] = tan 45° = 1 and cosec [latex]\frac{π}{2}[/latex] = 1 ∴ sin [latex]\frac{π}{6}[/latex] + cos [latex]\frac{π}{3}[/latex] – tan [latex]\frac{3π}{4}[/latex] + cosec [latex]\frac{2π}{2}[/latex] = [latex]\frac{(1 + 1 – 13 + 12)}{2}[/latex] = [latex]\frac{1}{2}[/latex]
2. The least value of 9 cosec[latex]^{2}[/latex] A + 16 sin[latex]^{2}[/latex] A is
    A. 7 B. 24 C. 25 D. 14

Answer: Option B
Explanation: 9 cosec[latex]^{2}[/latex] A + 16 sin[latex]^{2}[/latex]A = [latex]\frac{9}{sin^{2} A}[/latex] + 16 sin[latex]^{2}[/latex]A = ([latex]\frac{3}{sinA}[/latex])[latex]^{2}[/latex] + (4 sin A)[latex]^{2}[/latex] [ ∵ a[latex]^{2}[/latex] + b[latex]^{2}[/latex] = (a –b)[latex]^{2}[/latex] + 2ab] Let a = [latex]\frac{3}{sin A}[/latex] , b = 4 sin A = ([latex]\frac{3 – 4 sin A}{sin A}[/latex])[latex]^{2}[/latex] + [latex]\frac{2 × 3 × 4 sinA}{sin A}[/latex] = ([latex]\frac{3 – 4 sin A}{sin A}[/latex])[latex]^{2}[/latex] + 24 For the least value of ([latex]\frac{3 – 4 sin A}{sin A}[/latex]) should be 0. ∴ The least value will be 24.
3. If 2sin 2Θ – 3 = 0, then the value of Θ lies between
    A. 0° < Θ < [latex]\frac{π}{2}[/latex] B. 0° < Θ ≥ [latex]\frac{π}{2}[/latex] C. π ≥ Θ > [latex]\frac{π}{2}[/latex] D. π < Θ ≥ 2π

Answer: Option A
Explanation: ∵ 2sin 2Θ – 3 = 0 or, sin2Θ = 3 (= sin 60°) 2 or, 2Θ = 60° ∴ Θ = 30° Hence, Θ lies between 0° < Θ < [latex]\frac{π}{2}[/latex]
4. The value of [latex]\frac{sin A}{1 + cos A}[/latex] + [latex]\frac{sin A}{1 – cos A}[/latex] is (0° < A < 90°)
    A. 2 cosec A B. 2 sec A C. 2 sin A D. 2 cos A

Answer: Option A
Explanation: [latex]\frac{sin A}{1 + cos A}[/latex] + [latex]\frac{sin A}{1 – cos A}[/latex] = [latex]\frac{sin A (1 – cos A)}{(1 + cos A)}[/latex] + [latex]\frac{sin A (1 + cos A)}{ (1 – cos A)}[/latex] = [latex]\frac{sin A – sin A cos A + sin A + sin A cos A}{1 – cos^{2}A}[/latex] = [latex]\frac{2 sin A}{sin^{2} A}[/latex] [∵ 1 – cos[latex]^{2}[/latex] A = sin[latex]^{2}[/latex] A] = [latex]\frac{2}{sin A}[/latex] = 2 cosec A [ ∵ [latex]\frac{1}{sinA}[/latex] = cosec A]
5. If r sin Θ = 1, r cos Θ = √3, then the value of ( √3 tan Θ + 1) is
    A. √3 B. [latex]\frac{1}{√3}[/latex] C. 1 D. 2

Answer: Option D
Explanation: Given, r sin Θ = 1 ...(i) r cos Θ = √3 ...(ii) Eq. (i) ÷ (ii), [latex]\frac{r sin Θ}{r cos Θ }[/latex] = [latex]\frac{1}{√3}[/latex] ⇒ tan Θ = [latex]\frac{1}{√3}[/latex] Now, √3 tan Θ + 1 = √3 × [latex]\frac{1}{√3}[/latex] + 1 = 1 + 1 = 2

Other Articles



shape Job-Alerts

Competitive Exams - Recent Job Notifications
Category
Banking SSC Railway
Defence Police Insurance
Click Here For – All India Latest Jobs

shape SP Quiz

Competitive Exams - Practice Sets
Category Quiz
Quant Aptitude Current Affairs
Spotting Errors
Reasoning Ability Puzzles
Insurance Awareness Insurance Awareness

shape GK

General Knowledge for Competitive Examinations
Topic Name of the Article
GK - World World Major Airlines
Father of Nations
GK - India Unlawful Activities Prevention Act
Union Budget 2019 Highlights
GK - Abbreviations Sports Abbreviations
Indian Government Policies Abbreviations
GK - Banking & Insurance Countries and Central Banks
Merchant Banking Services
GK - Science & Technology Zoology Terminology
Important Scientific Instruments