1. If x = 2 then the value of x3 + 27x2 + 243x + 631 is:
A. 1211
B. 1231
C. 1233
D. 1321
Answer: Option C
Explanation:
Given equation,
f(x) = x[latex]^{3}[/latex]+ 27x[latex]^{2}[/latex] + 243x + 631
⇒ x(x[latex]^{2}[/latex] + 27x+ 243) + 631
Now, put the value of x = 2
⇒ 2(2[latex]^{2}[/latex] + 27 × 2 + 243) + 631
⇒ 2 (4 + 54 + 243) + 631
⇒ 2(301) + 631 = 602 + 631 = 1233.
2. When 2x + [latex]\frac{2}{x}[/latex]2 = 3, then value of x[latex]^{3}[/latex] + [latex]\frac{1}{x}[/latex] + [latex]\frac{2}{x^{3}}[/latex] is
A. [latex]\frac{2}{7}[/latex]
B. [latex]\frac{7}{8}[/latex]
C. [latex]\frac{7}{2}[/latex]
D. [latex]\frac{8}{7}[/latex]
Answer: Option B
Explanation:
Given,
2x + [latex]\frac{2}{x}[/latex] = 3
or [latex]\frac{(x + 1)}{2}[/latex] = [latex]\frac{3}{2}[/latex]
Cubing both sides, we get
x[latex]^{3}[/latex]+ [latex]\frac{1}{x^{3}}[/latex] + 3 [latex]\frac{(x + 1) }{x}[/latex]= [latex]\frac{27}{8}[/latex]
or, x[latex]^{3}[/latex] + [latex]\frac{1}{x^{3}}[/latex]+ 3 × [latex]\frac{3}{2}[/latex] = [latex]\frac{27}{8}[/latex]
or, x[latex]^{3}[/latex] + [latex]\frac{1}{x^{3}}[/latex] = [latex]\frac{27}{8}[/latex] – [latex]\frac{9}{2}[/latex] = [latex]\frac{– 9}{8}[/latex]
or, x[latex]^{3}[/latex] + [latex]\frac{1}{x^{3}}[/latex] + 2 = 2 – [latex]\frac{9}{8}[/latex]9 ⇒ [latex]\frac{7}{8}[/latex]7
3. If x = 332, y = 333, z = 335 then the value of x[latex]^{3}[/latex] + y[latex]^{3}[/latex] + z[latex]^{3}[/latex] – 3xyz = ?
A. 1000
B. 9000
C. 7000
D. 65000
Answer: Option C
Explanation:
∵ ( x[latex]^{3}[/latex] + y[latex]^{3}[/latex] + z[latex]^{3}[/latex] – 3xyz) = (x + y + z) (x[latex]^{2}[/latex] + y[latex]^{2}[/latex]+ z[latex]^{2}[/latex] – xy – yz – zx)
= (x + y + z) × [latex]\frac{1}{2}[/latex] [(x – y)[latex]^{2}[/latex] + (y – z)[latex]^{2}[/latex] + (z – x)[latex]^{2}[/latex]]
On putting the values, we get
= 1000 × [latex]\frac{1}{2}[/latex] [(332 – 333)[latex]^{2}[/latex] + (333 – 335)[latex]^{2}[/latex] + (335 – 332)[latex]^{2}[/latex]]
= 1000 × [latex]\frac{1}{2}[/latex] [1 + 4 + 9]
= 7000
4. If [latex]\frac{x + 1}{x}[/latex] = 5, then [latex]\frac{2x}{3x^{2} – 5x + 3}[/latex] is equal to
A. 5
B. [latex]\frac{1}{5}[/latex]
C. 3
D. [latex]\frac{1}{3}[/latex]
Answer: Option B
Explanation:
x + [latex]\frac{1}{x}[/latex] = 5
⇒ x[latex]^{2}[/latex] – 5x + 1 = 0
Equation multiplied by 3, then
⇒ 3x[latex]^{2}[/latex] – 15x + 3 = 0 ⇒ 3x[latex]^{2}[/latex] + 3 = 15x
∴ [latex]\frac{2x}{3x^{2} – 5x + 3}[/latex] = [latex]\frac{2x}{15x – 5x}[/latex]
= [latex]\frac{2x}{10x}[/latex] = [latex]\frac{1}{5}[/latex]
5. If ab + bc + ca = 0, then the value of [latex]\frac{1}{a^{2}– bc }[/latex] + [latex]\frac{1}{b^{2} – ac}[/latex] + [latex]\frac{1}{c^{2} – ab}[/latex] is
Answer: Option C
Explanation:
ab + bc + ca = 0
⇒ ab + ca = –bc
∴ a[latex]^{2}[/latex] – bc = a[latex]^{2}[/latex] + ab + ca = a(a + b + c)
Similarly,
b[latex]^{2}[/latex] – ac = b(a + b + c)
c[latex]^{2}[/latex] – ac = c(a + b + c)
∴ [latex]\frac{1}{a2 – bc }[/latex] + [latex]\frac{1}{b2 – ac}[/latex] + [latex]\frac{1}{c2 – ab}[/latex]
= [latex]\frac{1}{a(a + b + c)}[/latex] + [latex]\frac{1}{b(a + b + c)}[/latex] + [latex]\frac{1}{c(a + b + c)}[/latex]
= [latex]\frac{bc + ac + ab}{abc(a + b + c)}[/latex] = 0